

2018 Ohio Stormwater Conference Sandusky, OH – May 11, 2018

Hancock County Flood Risk Reduction Program

Watershed Planning Case Study

David Hayson, PE, SI

Senior Project Engineer

BS Civil Engineering – University of Dayton Land Surveying Certificate – Cincinnati State

Cincinnati - Water Resources Group

- Hydrologic and Hydraulic Assessment
 - Planning and Site/Civil Design
 - Modeling
 - Benefit-Cost Analyses

Agenda

- 1. Safety Moment
- 2. Project Location
- 3. Project Background
- 4. Independent Review
- 5. Proof of Concept
- 6. Project Refinements
- 7. Path Forward
- 8. Lessons Learned

Safety Moment

Don't Play, Swim, or Drive through Flooding Rivers.

Watershed / Client

Project Location

2018 Ohio SW Conference

You Are Here!

Maumee River Watershed

~6,575 sq. miles

Project Client

Maumee Watershed Conservancy District

- Represents 15 Counties in NW Ohio
- Established under Ohio Revised Code Chapter 6101 (December 1948)

Blanchard River Watershed

~770 sq. miles

Upper Blanchard River Watershed

~350 sq. miles

Upper Blanchard River Watershed

Key Project Stakeholders: MWCD Hancock County City of Findlay

Why are we studying the watershed?

Project Background

July 2017

Flood Categories (in feet)Major Flood Stage:13.5Moderate Flood Stage:12Flood Stage:11Action Stage:8

Historic Crests

(1) 18.50 ft on 03/25/1913 (2) 18.46 ft on 08/22/2007 (3) 17.43 ft on 06/14/1981 (4) 16.76 ft on 02/11/1959 (5) 16.53 ft on 07/14/2017 (6) 16.50 ft on 02/07/2008 (7) 16.42 ft on 03/01/2011 (8) 16.10 ft on 01/22/1959 (9) 15.58 ft on 12/22/2013 (10) 15.42 ft on 06/02/1997

https://water.weather.gov

August 2007

Flood Categories (in feet)		
Major Flood Stage:	13.5	
Moderate Flood Stage:	12	
Flood Stage:	11	
Action Stage:	8	

Historic Crests (1) 18.50 ft on 03/25/1913(2) 18.46 ft on 08/22/2007(3) 17.43 ft on 06/14/1981(4) 16.76 ft on 02/11/1959(5) 16.53 ft on 07/14/2017(6) 16.50 ft on 02/07/2008(7) 16.42 ft on 03/01/2011(8) 16.10 ft on 01/22/1959(9) 15.58 ft on 12/22/2013(10) 15.42 ft on 06/02/1997

https://water.weather.gov

USGS Gage 04189000 – Annual Peak Streamflow

(1) 18.50 ft on 03/25/1913 (2) 18.46 ft on 08/22/2007 (3) 17.43 ft on 06/14/1981 (4) 16.76 ft on 02/11/1959 (5) 16.53 ft on 07/14/2017 (6) 16.50 ft on 02/07/2008 (7) 16.42 ft on 03/01/2011 (8) 16.10 ft on 01/22/1959 (9) 15.58 ft on 12/22/2013 (10) 15.42 ft on 06/02/1997

https://water.weather.gov

Where Does the Water Come From?

Project Background

Where Does the Water Come From?

Project Background

HEC-HMS

HEC-HMS -- Blanchard River in Findlay

SCS Type II Storm Used For Conceptual Planning

Existing 1% Annual-Chance Flood Extents

Project Background

Floodplain Extents - Depths

Project Background

MONUMENT

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin "No simple plan for minor channel improvements will effectively eliminate flood damages."

Levees/floodwalls and Retention reservoirs were considered

Unfavorable Cost-Benefit Ratio

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

Corps of Engineers' Reports

"Since 1871, 16 preliminary reports have been written on the subject of improvement of the Maumee River and its tributaries.

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

Solutions Considered

Reservoirs – 3 sites considered

Floodplain Evacuation – Impractical

Channel Improvement – Not feasible

High Velocity Channel – Not feasible

Diversion – *Reviewed in further detail*

Levees & Floodwalls – *Feasible*

August 2007

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

URS (2008)

 Draft Alternatives Assessment for Findlay and Ottawa, Ohio Flood Damage Reduction Project Prepared for NWOFMP

"...memorandum assessed the continued viability of previously considered or recommended alternatives"

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

URS (2008)

 Draft Alternatives Assessment for Findlay and Ottawa, Ohio Flood Damage Reduction Project

USACE (2011, 2015, 2016)

- Interim Feasibility Study
- Draft Environmental Impact Statement
- Draft Final EIS

FEASIBILITY SCOPING REPORT BLANCHARD RIVER WATERSHED, OHIO

Interim Feasibility Study for Flood Risk Management in Findlay and Ottawa, Ohio

December 2011

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

URS (2008)

 Draft Alternatives Assessment for Findlay and Ottawa, Ohio Flood Damage Reduction Project

USACE (2013, 2015, 2016)

- Final Array of Plans
- Draft Environmental Impact Statement
- Draft Final EIS

REPORT SYNOPSIS FINAL ARRAY OF PLANS BLANCHARD RIVER WATERSHED, OHIO

Interim Feasibility Study for Flood Risk Management in Findlay and Ottawa, Ohio

March 2013

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

URS (2008)

 Draft Alternatives Assessment for Findlay and Ottawa, Ohio Flood Damage Reduction Project

USACE (2013, **2015**, 2016)

- Final Array of Plans
- Draft Environmental Impact Statement
- Draft Final EIS

Western Lake Erie Basin (WLEB) Blanchard River Watershed Study Section 441 of the Water Resource Development Act of 1999 General Investigations

DRAFT Detailed Project Report/Environmental Impact Statement

U.S. Army Corps of Engineers, Buffalo

APRIL 2015

Vogt, Ivers, Seaman and Associates (1950s)

 "Findlay Flood Problem" – Interim Report on the Upper Blanchard River Basin

USACE (1963)

 Survey Report of Flood Control at the City of Findlay

URS (2008)

 Draft Alternatives Assessment for Findlay and Ottawa, Ohio Flood Damage Reduction Project

USACE (2013, 2015, 2016)

- Final Array of Plans
- Draft Environmental Impact Statement
- Draft Final EIS

U.S. Army Corps of Engineers, Buffalo

MARCH 2016

Western Diversion of Eagle Creek

25-Year (4% ACE) Capacity

Opinion of Probable Cost

25-Year Channel Sizing Estimates		
01	Lands & Damages	\$ 6,580,000
02	Relocations	\$ 14,590,000
06	Fish & Wildlife	\$ 1,758,000
08	Roads, Railroads Bridges	\$ 2,657,000
09	Channels and Canals	\$ 34,587,000
15	Floodway Control & Diversion Structure	\$ 8,708,000
18	Cultural Resource Preservation	\$ 692,000
30	Planning, Engineering & Design	\$ 8,182,000
31	Construction Management	\$ 3,149,000
	First Costs	\$ 80,903,000
	Interest during construction	\$ 5,671,000
	Total Cost	\$ 86,574,000

About \$18 million allocated for new bridges and roads Includes 27.5% Contingency

Original Scope of Work

Project Transition
Enter Stantec

- Analyze the USACE Feasibility Report
- Perform field surveys and geotechnical investigations
- Determine preferred channel alignment

Not authorized

- Prepare property acquisition plan and legal descriptions
- Prepare final design and construction plans.
- Prepare necessary documents to secure regulatory permits

"Phase 1" – Gap Analysis

Independent Review

Enter Stantec

Original Proposed Schedule

tantec

Schedule

Stantec

Field Reconnaissance

- Preliminary Reconnaissance
 - Observed topography, landuses & infrastructure
 - Gained context for project scale

antec

Data Reviewed

- Reports
- Files on USACE
 External Hard Drive
- Public Data (USGS, ODOT, etc.)

- H&H
- Base Map Data
- Geotechnical
- Transportation
- Cost
- Economics
- Design
- Environmental

Data Reviewed

- Reports
- Files on USACE
 External Hard Drive
- Public Data (USGS, ODOT, etc.)

- H&H
- Base Map Data
- Geotechnical
- Transportation
- Cost
- Economics
- Design
- Environmental

	1	USACE_hard_drive Properties							
		General Secu	rity Previous Versions Customize						
			USACE_hard_drive						
		Type:	File folder						
		Location:	U:\1743\174316203\resource						
		Size:	213 GB (229,548,056,298 bytes)						
		Size on disk:	213 GB (229,620,940,800 bytes)						
		Contains:	29,045 Files, 373 Folders						
		Created:	Friday, July 15, 2016, 10:00:31 AM						
		Attributes:	Read-only (Only applies to files in folder)						
			Hidden Advanced						
			OK Cancel App	ly					

15 Alternatives

Hydrologic and Hydraulic model methodology

Model Results

tantec

Data Reviewed

- Reports
- Files on USACE **External Hard Drive**
- Public Data (USGS, ODOT, etc.)

- H&H
- Base Map Data
- Geotechnical
- Transportation
- Cost
- Economics
- Design
- Environmental

Historical project borings

ODOT TIMS data

Data Reviewed

- Reports
- Files on USACE
 External Hard Drive
- Public Data (USGS, ODOT, etc.)

- H&H
- Base Map Data
- Geotechnical
- Transportation
- Cost
- Economics
- Design
- Environmental

Figure 10 – Estimated bedrock topography (feet NAVD88) in vicinity of diversion channel (pink) with data points (green)

Costs

Benefits

Data Reviewed

- Reports
- Files on USACE External Hard Drive
- Public Data (USGS, ODOT, etc.)

Project Components

Residential Emergency

NFIP Admir

Total First (Interest Du

Average An

Diversion C

Movable Da

- H&H
- Base Map Data
- Geotechnical
- Transportation
- Cost
- **Economics**
- Design
- Environmental

Table 1: Project First Costs				
Description	Amount	Cont.%	Cont. \$	Total
01 – Lands and Damages	\$ 5,511,000	19.4%	\$ 1,068,000	\$ 6,579,000
02 – Relocations	\$ 11,443,000	27.5%	\$ 3,147,000	\$ 14,589,000
06 – Fish and Wildlife	\$ 1,379,000	27.5%	\$ 379,000	\$ 1,758,000
08 – Road, Railroads & Bridges	\$ 2,084,000	27.5%	\$ 573,000	\$ 2,657,000
09 – Channels and Canals	\$ 27,127,000	27.5%	\$ 7,460,000	\$ 34,587,000
15 - Floodway Control & Diversion	\$ 6,830,000	27.5%	\$ 1,878,000	\$ 8,709,000
18 - Cultural Resources	\$ 543,000	27.5%	\$ 149,000	\$ 692,000
30 - Engineering & Design	\$ 6,417,000	27.5%	\$ 1,765,000	\$ 8,182,000
31 - Construction Management	\$ 2,470,000	27.5%	\$ 679,000	\$ 3,149,000
TOTAL	\$ 63,804,000		\$ 17,099,000	\$ 80,902,000

M; Replacement
Costs
\$188,000
\$32,000
\$220,000

<u>Q = 25-yr Diversio</u>	n, I	NO BLCL, 1	.00 cfs	<u>Assumption</u>		
BENEFITS				ECONOMIC A	NA	LYSIS
				FY16 Discount Rate = 3.125	5%	
AVERAGE ANNUAL BENEFITS				AVERAGE ANNUAL	NET	BENEFITS
Commercial, Auto Damages Avoided:	\$	3,283,450	Į	\$		(254,250
Response Costs Avoided:	\$	121,100	í			
istrative Costs Avoided:	\$	6,200		BC ANAL	YSIS	
Total AA Benefits:	\$	3,410,750		AA BENEFIT:	\$	3,410,750
				AA COST:	\$	3,665,000
				BC Ratio:		0.93
<u>COSTS</u>						
INVESTMENT COSTS						
Cost:	\$	80,903,000		RESIDUAL D	AN	IAGES
ring Construction:	\$	5,671,000				
Total Investment Costs:	\$	86,574,000		AA RESIDUAL D	DAM	AGES
				\$		1,690,850
AVERAGE ANNUAL COSTS						
nual Investment Cost:	\$	3,445,000				
hannel & Drainage Structures:	\$	188,000				
im:	\$	32,000				
Total AA Costs:	\$	3,665,000				

Independent Data Review Analysis

Project Objective?

"The overall objective of the study is to reduce flood risk and improve the overall quality of life for the residents of the Findlay, Ohio, area."

• More specific and measurable goal needed

Hydrology

Residual Risk

Residual Risk

15% of Watershed Influenced if Only Eagle Creek is Addressed

1% ACE

tantec

intec

Alternative 13 (Recommended Plan)

• 25-year event diversion channel with Eagle Creek at 100 cfs.

• Design and Engineering

- Update project objective?

- Hydrology & Hydraulics (H&H)
 - Risk based evaluation?
 - HMS to RAS unsteady model update?

Cost and Economics

- Address BCR less than 1.0?

USACE Coordination

- Stantec coordinated with USACE throughout data review
 - Questions for clarification

Tasks and Schedule

Design Deliverables

- Conceptual Design Advancement (Stage 1)
 - Phase 1 Complete 🗹
 - Phase 2 Verify Concept
 - Part A Data Acquisition
 - Part B Concept Refinement
 - Part C 30% Drawings
- 60% (Stage 2) \longrightarrow (Permits)
- 90%
- Final (Stage 3)

"Phase 2"

Proof of Concept

Conceptual Design Advancement

Phase 2 – Work Plan – Proof of Concept

• Part A

- Additional Data Collection And Analysis
- Part B
 - Refinement of Conceptual Design
- Part C
 - 30% Design Plans

Project Objective

Alternative 13 (Recommended Plan)

- 25-year event diversion channel with Eagle Creek at 100 cfs
- Client requested project achieve 4'+ level of reduction on Blanchard River as planning level benchmark
- Specific and measurable project goal

Additional Data Collection And Analysis

• Collect data for additional benefits (BCR > 1)

H&H - Aggregate risk reduction of project
 – Refine model, gage analysis

• Environmental Pre-Application meetings

Reconnaissance level mussel surveys

Stantec

• Traffic Volumes and Bridge Type Studies

Additional Data Collection And Analysis

Part A

Collect data for additional benefits (BCR > 1)
 – Hire Jack Faucett Associates as sub-consultant

• Potential benefits include:

- Road closures
- Business losses
- Lost income/wages
- Agricultural losses
- Others

Additional Data Collection And Analysis

Part A

• 11 proposed geotechnical borings

Hydraulics

HEC-RAS Model Updates

- Updated RAS into unsteady-state model, 2D
- Reviewed Blanchard XS's from survey data
- Reviewed bridge data from drawings

Hydrology

HEC-HMS Model Updates

- Added nodes for HEC-RAS linkage
- Verified calibration results
- Statistical study

Stantec Hydrology Study

Stantec Hydrologic Study

- Calibration
- Spatial Distribution
- Temporal Patterns
- Gage Analyses

Stantec Hydrology Study

Blanchard River DS of Findlay - 2007 Records 15,000 Recorded Discharge Historical Mean 14,000 Aug. 22, 2007 Historical 95th Percentile Minor Flood 13,000 Moderate Flood Major Flood 12,000 11,000 10,000 9,000 Discharge (cfs) 8,000 7,000 6,000 5,000 4,000 Dry antecedent 3,000 conditions 2,000 1,000 0 February March April May July August September October December January June November Month & Day

USGS Gage 04189000

Calibration Events

Area (sqmi)

11/08/2016

Stantec HEC-HMS Model

Spatial Distribution

– Custom Hypothetical Storm

Temporal Patterns

Applied Weather Associates

Stantec HEC-HMS Model

Stantec

Stantec Gage Frequency Analyses

USGS Gage #04189000 Blanchard River Downstream of Findlay

Bulletin # 17B of the Hydrology Subcommittee

Revised September 1981 Editorial Corrections March 1982

INTERAGENCY ADVISORY COMMITTEE ON WATER DATA

U.S. Du Geolo Office Resto

U.S. Department of the Interior Geological Survey Office of Water Data Coordination Reston, Virginia 22092

Percent	Average	Computed	Confide	nce Limits
Chance	Recurrence	Discharge	0.05	0.95
Exceedance	Interval (years)	(cfs)		
0.1	1000	17,117	20,649	14,715
0.2	500	16,156	19,351	13,964
0.5	200	14,811	17,552	12,903
1.0	100	13,727	16,120	12,039
2.0	50	12,576	14,619	11,113
4.0	25	11,346	13,037	10,111
10.0	10	9,559	10,788	8,625
20.0	5	8,028	8,918	7,319
50.0	2	5,530	6,020	5,086
99.9	1	875	1,084	667
Stantec HEC-HMS Design Storm

Stantec

Blanchard River in Findlay, Ohio

100-Year, 24-Hour Storm = 5.26" Custom Spatial / Temporal Patterns

Additional Data Collection Summary

Cost/Economics

Jack Faucett reviewed additional benefits available

Geotechnical

• 11 localized borings completed

Survey Data

Channel & Aerial surveys

H&H

- Updated HEC-RAS to unsteady-state
- Meteorology/risk analysis

Conceptual Review

Project Refinements

Double Peak

Blanchard River Rating Curve at Main Street

Eagle Creek Flows

25-year 3,400 cfs

50-year 4,000 cfs

100-year 4,600 cfs

500-year 6,400 cfs

Flow Table – Blanchard River Main St. Bridge (XS 295930)

	Flow	WSE	Depth	
Event	(cfs)	(ft.)	(ft.)	
500-Year	20,860	778.9	21.4	
200-Year	17,510	778.0	20.5	
100-Year	15,480	777.2	19.7	
50-Year	13,515	776.4	18.9	
25-Year	11,645	775.2	17.7	
10-Year	9,340	774.2	16.7	
5-Year	7 <i>,</i> 695	773.2	15.7	
2-Year	5,828	771.4	13.9	
1-Year	4,340	769.8	12.3	

Blanchard River Flow Profiles

Path Forward

Conceptual Design Advancement

Phase 2 – Work Plan – Proof of Concept

- Part A
 - Additional Data Collection And Analysis
- Part B
 - Refinement of Conceptual Design
- Part C
 - 30% Design Plans

Path Forward

Refinement of Conceptual Design

Part B

• Assess ways to improve the initial design

• Benefit/Cost Analysis

- Refining costs (value engineering)
- Evaluate additional benefits to achieve a BCR greater than 1

- H&H
 - Model refinement
 - Assess concepts to reduce the residual risk

Eagle Creek Diversion Channel

Proof of Concept

- Relocate entrance
- Reduce diversion channel length
- At-grade intersection with Aurand Run
- Refine profile
 - Reduce overall excavation & waste
 - Reduce rock excavation
- Refine width for design discharge
 - 25yr-vs-100yr capacity
- Cost refinement

Stantec

Concept Design Charrette

• Diversion Inlet Relocation

Diversion Channel Inlet Relocation

Rec. Plan

Diversion Channel Inlet Relocation

Stantec

Diversion Channel Inlet Relocation

Sizing (Convey 25- 50-, 100-year?)

Stantec

Alignment

Concept Design Charrette

• Diversion Channel Refinement

Stantec

Diversion Channel Alignment

Diversion Channel Alignment

Opportunities

Reduce diversion channel length in multiple locations
Up to 3,150 feet (up to \$4,725,000 in savings)

• Avoid 90° bends

Savings

•	~\$1	,500	/	LF
---	------	------	---	----

From Cost Engineering Report	Curr	Current Plan	
Description	Cost	\$/LF	[:] channel
01 – Lands and Damages	6,579,000	\$	134
02 – Relocations	14,589,000	\$	296
06 – Fish and Wildlife	1,758,000	\$	36
08 – Road, Railroads & Bridges	2,657,000	\$	54
09 – Channels and Canals	34,587,000	\$	703
15 – Floodway Control & Diversion	8,709,000	\$	177
18 – Cultural Resources	692,000	\$	14
30 – Engineering & Design	8,182,000	\$	166
31 – Construction Management	3,149,000	\$	64
Total	80,902,000	\$	1,644

Eagle Creek Diversion Channel Geometry

USACE Feasibility Study 2015

- (1) The diversion channel has the following overall properties. Detailed dimension information is shown in Table 2:
 - Channel Length: 9.2 miles
 - Channel Shape: Trapezoidal
 - Bottom Width: 25 to 52 feet
 - Depth: 11 to 12 feet
 - Side Slopes: 4H:1V

Table 2 – Diversion Channel Bottom Profile and Cross-Section Dimension

Start Station (feet)	End Station (feet)	Elevations (feet NAVD)	Bottom Slope	Channel Bottom Width (feet)	Channel Depth (feet)	Channel Sideslopes
0+00	20+00	751.5 - 754.1	0.13%	37	11.5	4H:1V
20+00	60+00	754.1 - 759.5	0.14%	37	11.0	4H:1V
60+00	107+00	759.5 - 769.5	0.21%	25	11.0	4H:1V
107+00	180+00	769.5 - 775.0	0.08%	42	12.0	4H:1V
180+00	230+00	775.0 - 779.5	0.09%	36	12.0	4H:1V
230+00	301+00	779.5 - 783.5	0.06%	52	12.0	4H:1V
301+00	478+00	783.5 - 795.4	0.07%	47	12.0	4H:1V
478+00	495+40	795.4 – 796.2	0.06%	47	12.0	4H:1V

Eagle Creek Flood Diversion Streamlined Alt 13 Channel Alignment Profile View

Existing Grade - LiDAR, OGRIP, 2FT

Concept Design Refinement

Preliminary Recommendations

- Update capacity from 25-year to 100-year flows
- Reduce channel length
- Refine profile
- Estimated Cost \$106 MM, incl. 30% contingency

Additional Concepts Reviewed

Project Refinements

Concept Designs Reviewed

Blanchard River watershed – 346 sq. miles

Eagle Creek Diversion watershed - 51 sq. miles

Potential Opportunities

 Projects covering other drainage basins

> Reduces residual risk associated with varying rainfall

Concepts Considered

Stantec

Concept Design Charrette

• Diversion Channel Extension

Diversion Extension

Diversion Channel Extension To Lye

Opportunities

- Divert up to 2,000 cfs more
- Reduce flooding on Lye
- Reduce flooding on Blanchard

Challenges

- Topography
- Extra diversion structure(s)
- Inlet location on Eagle Creek is challenging

Costs

• \$32.5 MM

Reduction in WSE?

• ~1.5'

From Cost Engineering Report		Eagle-Lye (EL)		
Description	Cos	st	% of total	
01 – Lands and Damages	\$	2,520,181.45	8%	
02 – Relocations	\$	5,431,741.42	17%	
06 – Fish and Wildlife	\$	654,534.33	2%	
08 – Road, Railroads & Bridges	\$	1,139,496.91	4%	
09 – Channels and Canals	\$	12,043,599.14	37%	
15 – Floodway Control & Diversion	\$	5,806,000.00	18%	
18 – Cultural Resources	\$	265,080.65	1%	
30 – Engineering & Design	\$	3,298,038.66	10%	
31 – Construction Management	\$	1,268,856.19	4%	
Total	\$	32,427,529	100%	

Diversion Channel Extension To Blanchard

Opportunities

- Divert flow from Findlay
- Reduce flooding on Lye
- Reduce flooding on Blanchard

Challenges

- Topography
- Extra diversion structure(s)
- Inlet location on Eagle Creek is challenging

Costs

• \$51.3 MM+

Reduction in WSE?

• ~1.5'+

From Cost Engineering Report		Eagle-Lye-Blanchard (ELB)			
Description	Cos	t	% of total		
01 – Lands and Damages	\$	5,305,645	10%		
02 – Relocations	\$	9,282,486	18%		
06 – Fish and Wildlife	\$	1,118,556	2%		
08 – Road, Railroads & Bridges	\$	1,844,212	4%		
09 – Channels and Canals	\$	19,762,586	38%		
15 – Floodway Control & Diversion	\$	6,452,199	13%		
18 – Cultural Resources	\$	558,065	1%		
30 – Engineering & Design	\$	5,063,380	10%		
31 – Construction Management	\$	1,948,037	4%		
Total	\$	51,335,165			

Percent of Watershed Influenced

Concept Designs Reviewed

Remove inline structures

Channel widening

Structure modifications

Stantec

Concept Design Charrette

Blanchard River Modifications

Downstream of RR Bridge

Riverside Park Waterfront and Waterfalls

Blanchard River Alternative Profiles- A

Blanchard River Modifications

Low Head Dam Removals

• 5 low head dam/riffle structures on the Blanchard

Reduce WSE on the Blanchard River

Costs

• \$~500,000 per removal of inline dam structure

Reduction in WSE?

~0.4' removing 4 downstream riffle structures (diverted flow)

Channel Widening

Source: https://cfpub.epa.gov/watertrain/moduleFrame.cfm?parent_object_id=637

tantec

Remove Inline Riffles/Dams

Floodplain Bench Widening

> Bridge Modifications

> > Widening Currently in MWCD Official Plan

Stantec

Hydraulic Improvements

Blanchard River Modifications

Widening

Opportunities

- Reduce WSE on the Blanchard River
- Much of corridor contains bought out parcels

Challenges

• HTRW sites?

Costs

~\$11.5 MM for downstream widening

Reduction in WSE?

• ~0.6' for downstream widening

Profile: Channel Modifications+ Inline Structures Removal

Stantec

Percent of Watershed Influenced

Hydraulic Improvements

Blanchard River Rating Curve at Main Street

Stantec

Blanchard River Facing Downstream

RR Bridge

Single Rail Thru Plate Girder Structure

RR Bridge

Stantec

Concept Design Charrette

• Blanchard/Lye Cutoff Levee

Blanchard/Lye Cutoff Levee

Existing Cond. 500-Year Maximum Depth

Blanchard/Lye Cutoff Levee

With Levee 500-Year Maximum Depth

Cut-off Levee

ntec

Opportunities

Reduce flooding along Lye Creek

Challenges

• Induced flooding along Blanchard River

Costs

• ~\$8 MM for cutoff levee (from previous study)

Increase in WSE

• 0-2'

Account Code	Description	Subtotal	Contingency (%)	Contingency (\$)	Total		
01	Lands & Damages	\$3,762,500	25.0%	\$ 940,625	\$4,703,125		
06	Fish & Wildlife	\$ 40,500	22.3%	\$ 9,011	\$ 49,511		
08	Roads, Railroads Bridges	\$ 190,400	25.0%	\$ 47,600	\$ 238,000		
11	Levees and Floodwalls	\$1,624,200	23.7%	\$ 385,585	\$2,009,785		
15	Flood Control	\$ 332,400	20.0%	\$ 66,414	\$ 398,814		
18	Cultural Resources	\$ 20,000	35.9%	\$ 7,182	\$ 27,182		
30	Eng & Design	\$ 264,899	29.0%	\$ 76,715	\$ 341,614		
31	Construction Management	\$ 176,599	19.6%	\$ 34,543	\$ 211,142		
			TOTAL FIRST COST: \$7,979,1				

Table 13 - Blanchard River to Lye Creek Diversion Cutoff Cost Sun

Multiple Locations Reviewed

Stantec

Concept Design Charrette

Storage

Water Reservoir

Storage

Storage Upstream of SR15 on Blanchard

Storage Upstream of SR15 on Blanchard

Storage Upstream of SR15 on Blanchard

Storage

Opportunities

• Reduce peak flows on the Blanchard River / tributaries

Challenges

- ODNR
- ODOT
- FEMA
- Property / Environmental impacts

Storage

Eagle Creek Dry Storage Storage

					Feet
0	500	1,000	2,000	3,000	4,000

1% ACE 100-Year, 24-Hour SCS Type II = 5.26''

Blanchard River in Findlay

tantec

Eagle Creek Dry Storage

■ Blanchard (Total) ■ Blanchard Upstream ■ Eagle Creek ■ Lye Creek

Blanchard River & Potato RunStorageat Mt. Blanchard

Percent of Watershed Influenced

Eagle Creek Storage + Blanchard R. and Potato Run Storage

Lye Creek

1% ACE 100-Year, 24-Hour SCS Type II = 5.26''

Blanchard River in Findlay

antec

■ Blanchard (Total) ■ Blanchard Upstream ■ Eagle Creek

Summary

Project Refinements

Project Refinements

Summary

- Diversion Channel (with extensions)
- Channel Modifications
- Structure Modifications
- Cut-off Levee
- Storage

Project Refinements

Summary

- **Diversion Channel** (with extensions)
- Channel Modifications
- Structure Modifications
- Cut-off Levee
- Storage

Benefits and Impacts Summary

Alternative	Modeled Scenario	Reduction in WSE at Main St (Feet)	Max Water Depth on Main St (Feet)	Duration Water is 6" Above Main St (Hours)	Total Acres Directly Impacted by Project Construction	Home Buyouts	New Bridges or Cul- De-Sacs	Acres Impacted Outside of Ex. Regulatory Floodplain	Acres Removed from Floodplain	Agricultural Acres Removed from Floodplain	Parcels Directly Impacted by Project Construction	Parcels Removed from Floodplain
0	Existing Conditions	n/a	4.6	50								
1	USACE Plan (25-Yr Diversion)	0.9	3.6	45	960	1	13	960	1,690	1,140	75	1,670
2	Blanchard R. Modifications	0.9	3.7	40	2	0	0	2	280	40	5	760
3	Blanchard R. + Eagle Cr. Storage	2.8	1.8	35	1,140	14	1	863	2,780	1,180	55	2,460
4	Blanchard R. + Eagle Cr. Storage + Blanchard & Potato Storage	3.6	1	15	2,430	19	2	1,514	5,060	2,850	135	2,850

Benefit / Impact Summary HEC-RAS Results (SCS Type II – NOAA Atlas 14 100-Year, 24-Hour event (5.26 inches) equally distributed across watershed)
Opinions of Probable Cost

Spatial Spread of Projects

Independent Projects that make up a Program

Alternatives

Alternative	Base Cost	Cost With Contingency
Alternative o – Existing Conditions		
Alternative 1 – USACE Plan (25-Year Diversion of Eagle Creek)	\$63,804,000	\$80,902,000
Alternative 2 – Blanchard River Modifications	\$15,280,000	\$19,864,000
Alternative 3 – Alt. 2 + Eagle Creek Dry Storage Basin	\$68,780,000	\$89,414,000
Alternative 4 – Alt. 3 + Blanchard & Potato Dry Storage Basins	\$122,880,000	\$159,744,000

• Alternative 4 was Stantec's Recommended Plan

- Hydraulic improvements
- Eagle Creek dry storage basin
- Blanchard River dry storage basin
- Potato Run dry storage basin

Stantec Conceptual Flood Risk Reduction Plan

Other Flood Risk Reduction Measures

Hancock County Flood Risk Reduction Program: Benefit Cost Analysis

(STANTEC Project # 174316204)

Prepared for:

Submitted by:

Point of Contact:

Michael F. Lawrence, JFA President

4915 Saint Elmo Avenue, Suite 205

Bethesda, Maryland 20814

Phone: (301) 961-8835 Fax: (301) 469-3001

lawrence@ifaucett.com

March 2017

Opinion of Probable Construction Cost

Alternative Option	Base Cost	Cost With 30% Contingency
Riffle/Inline Structures Removal	\$780,000	\$1,014,000
Floodplain Bench Widening and Railroad Bridge Modifications	\$14,500,000	\$18,850,000
Total Hydraulic Improvements	\$15,280,000	\$19,864,000
Eagle Creek Dry Storage Basin	\$53,500,000	\$69,550,000
Blanchard River Dry Storage Basin	\$34,400,000	\$44,720,000
Potato Run Dry Storage Basin	\$19,700,000	\$25,610,000
Total Storage	\$107,600,000	\$139,880,000

Benefit-Cost Analysis

Full Program

Costs / Benefits - NPV (Thousands of 2017 Dollars)

Category	Cost	Benefit	Benefit- Cost Ratio
Program Costs	\$159,876		
Structures (Residential)		\$107,450	
Structures (Business)		\$42,867	
Notor Vehicles		\$5,388	
ransportation		\$8,992	
mergency Response		\$6,419	
NFIP Administrative Cost		\$18,311	
Business Losses (Income)		\$3,276	
Business Losses (Cleanup)		\$3,153	
Business Losses Emergency Plan		\$1,277	
Agricultural		\$368	
nvironmental		\$57,707	
otal	\$159,876	\$255,208	1.60

Hydraulic Improvements – Phase 1 Design

Path Forward

Floodplain Bench Widening

> Remove Inline Riffles/Dams

Norfolk-Southern RR Bridge Modifications in Phase 2

Hydraulic Improvements (Phase 1)

Floodplain Benching

Floodplain Benching Cross Sections

Existing Inline Structure Removals

Figure 1 - Blanchard River - Existing Inline Structure - (Cory Street Dam)

Figure 2 - Blanchard River - Existing Inline Structure - (Centennial Park Dam)

tantec

Constructed Riffles

Figure 5 – Example Constructed Riffle – (Section Detail)

Figure 6 – Example Constructed Riffle – (Profile View)

Example Project

Proposed Riffle Structures

Figure 7 – Kalamazoo River – Example Before Dam Removal (Pre-Construction)

Example Project

Proposed Riffle Structures

Figure 8 – Kalamazoo River – Constructed Riffle (Post-Construction)

Design

Wetland Area Avoidance

Utility Coordination

Stantec

Opinion of Probable Costs

Hydraulic Improvements (Phase 1) Only

Project Costs

Hydraulic Improvements - Phase I - Opinion of Probable Costs			
Description	Amount		
Construction Costs			
In-Stream Improvements:	\$1,401,000		
Floodplain Bench Widening Improvements:	\$7,179,000		
Utility and Bike Path Improvements:	\$1,222,000		
Utility Coordination:	\$750,000		
CONSTRUCTION SUBTOTAL	\$10,552,000		
Contingency (15%)	\$1,583,000		
CONSTRUCTION TOTAL	\$12,135,000		
Other Costs			
Tree Removal (Including Debris Removal)	\$105,000		
Stream Wetland and T&E Mitigation	\$75,000		
Construction Administration (5%)	\$607,000		
OTHER SUBTOTAL	\$787,000		
TOTAL PROJECT COSTS	\$12,922,000		

1% ACE Floodplain

1% ACE Floodplain

Anticipated Benefits

Stantec

Anticipated Benefits

New Blanchard River Rating Curve at Main Street

July 2017 Event ~ 10,500 CFS

Stantec

River Flow vs Depth at Main Street

Anticipated Benefits

ntec

- Increased Wetland Function
- Improved Water Quality
- Fish Passage & Aquatic Habitat
- Enhanced Recreational Opportunities
- Reduced Transportation Impacts
- 1% ACE Floodplain Reduction ~ LOMR To Be Filed Following Construction

Anticipated Schedule

Critical Path of Project is through Permitting

Design & Construction

- Tree Clearing Project
 - NTP: Feb. 2018
 - S.C.: Mar. 2018 / F.C.: May 2018
- Final Design
 - 60% Design submitted Dec. 2017
 - 95% Design due May 2018
 - Final IFB Package (estimated July 2018)
- Construction
 - Bidding & Award: Aug. 2018 / NTP: Sep. 2018 (**)
 - S.C.: Aug. 2019 / F.C.: Oct. 2019 (**)

** Targeting permits to be issued Summer 2018 **

Hancock County Flood Risk Reduction Program - Watershed Planning Case Study

Lessons Learned

Conclusions

Hancock County Flood Risk Reduction Program

Gap Analysis / ITR

 Independent review is critical prior to proceeding through design

Community Driven Projects

• May allow for additional solutions

Combination of Projects

• Large watershed with multiple tributaries

Multi-faceted Team

 Working closely together on a tight schedule provides benefits.

More Information

www.HancockCountyFlooding.com

Questions & Comments

David Hayson – <u>david.hayson@stantec.com</u> Stantec Consulting Services Inc.

