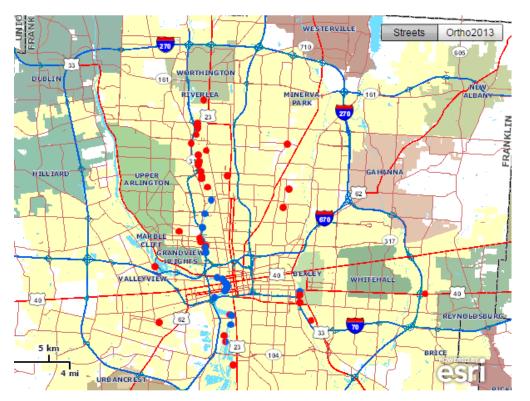
The Ohio State University

Measuring the Impacts of Green Infrastructure Implementation: Blueprint Columbus

David Wituszynski Graduate Research Associate Department of Food, Agricultural, and Biological Engineering

Today's Outline:


- 1. Goals and Motivation
- 2. Blueprint Columbus: Clintonville plans
- 3. OSU Research

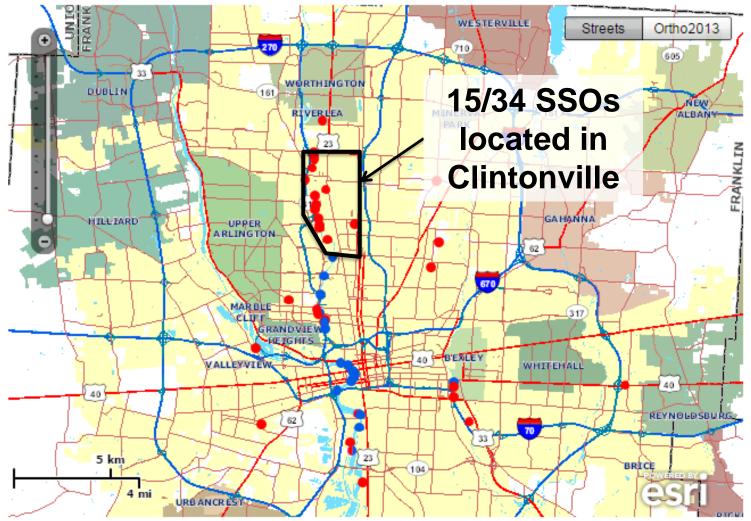
Clean streams. Strong neighborhoods.

SSOs/CSOs in Columbus

ischarge Location
 CSO Discharge Location
 SSO/CSO Discharge Location

Source: https://eapp.columbus.gov/ssocso/mnmap.aspx

- <u>In 2016:</u>
 - 34 SSOs outfalls
 - 97 events
 - All but 5 outfalls
 - 20 CSO outfalls
 - 188 events
 - All but 4 outfalls
 - Most outfalls discharge to Olentangy River

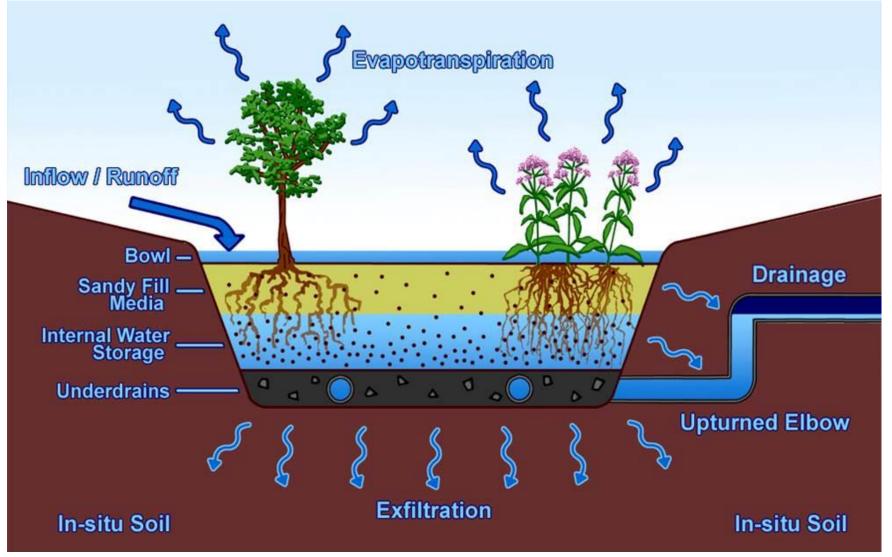

SSO Mitigation: 2 Options

- Blueprint Columbus
 - \$1.7B USD capitol costs
 - Includes green infrastructure, downspout disconnection, lateral lining, sump pumps
 - Reduce I/I by 30%
- Grey solutions = no impact on stormwater quality
- Modeling in SWMM showed greater reduction in overall SSOs for green solutions
- Ecosystem and community services

- Gray Solutions
 - \$1.6B USD capitol costs
 - Two SSO tunnels
 - Pipe upsizing, rehab, and replacement

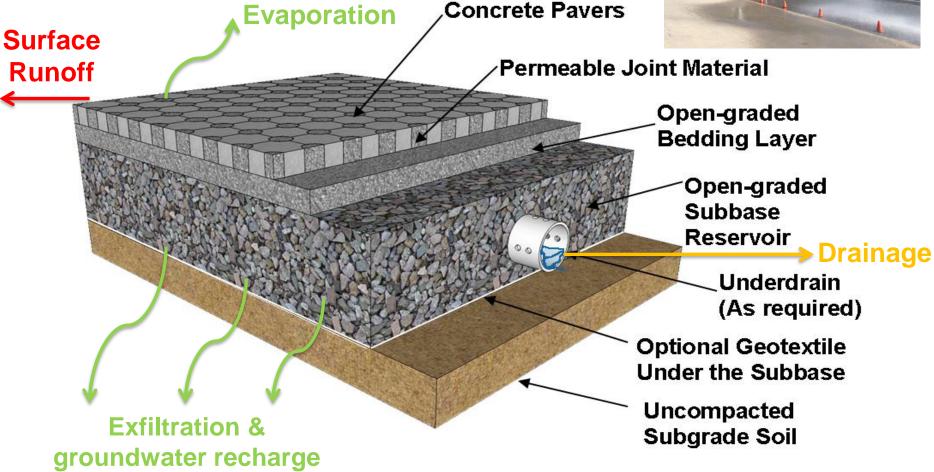
SSO Mitigation

Blueprint Columbus



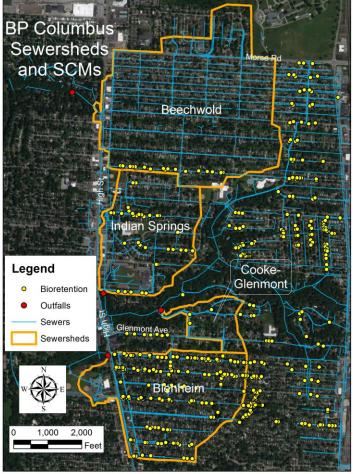
• SSO Discharge Location • CSO Discharge Location • SSO/CSO Discharge Location Source: https://eapp.columbus.gov/ssocso/mnmap.aspx

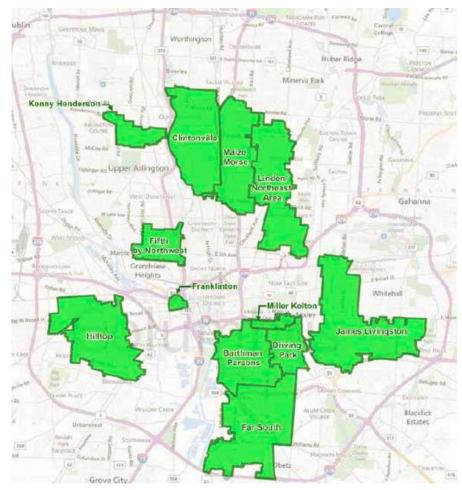
Clintonville Pilot Area


- Mandatory lateral lining and sewer main lining
 - Reduce I/I by 30% (thereby reducing SSOs)
- Redirect runoff from rooftops to lawns instead of directly to sewers or foundation drains
- Sump pump installation (reduce flow to foundation drains)
- Green Infrastructure for stormwater
 management

Bioretention Typical Cross-Section

Permeable Pavement Cross-Section




Why Monitor?

- Watershed planning
- Watershed-scale BMP
 implementation
 - Impacts at outfall to surface waters

Long-Term Plan: City-wide Implementation

Source: CDM Smith

Statement of Needs

- We have excellent data on how single stormwater practices perform (BR, PP, Swales, Wet Ponds, etc.)
- How do these systems, implemented watershed (catchment) – wide, affect hydrology and WQ?
- What %age of catchment needs to be retrofitted before a change is observed?
- How do we best locate SCMs and compare gray vs. green

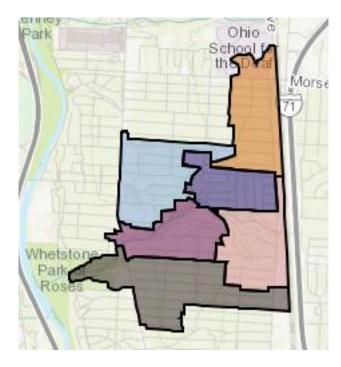
Blueprint Goals & OSU Research 2016-22:

- 1 Reduce sewer overflows
 - Analyze storm flows
- 2 Improve water quality
 - Analyze water quality
- 3 Provide habitat

Cleah streams. Strong neighborhoods.

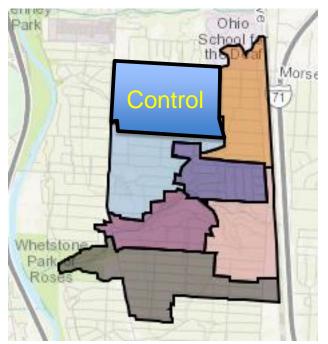
- > Analyze species in gardens
- 4 Improve property values
 ➤ Track home prices
- 5 Stabilize neighborhoods
 ➢ Survey residents

Quantify changes in volume and quality of flow during:

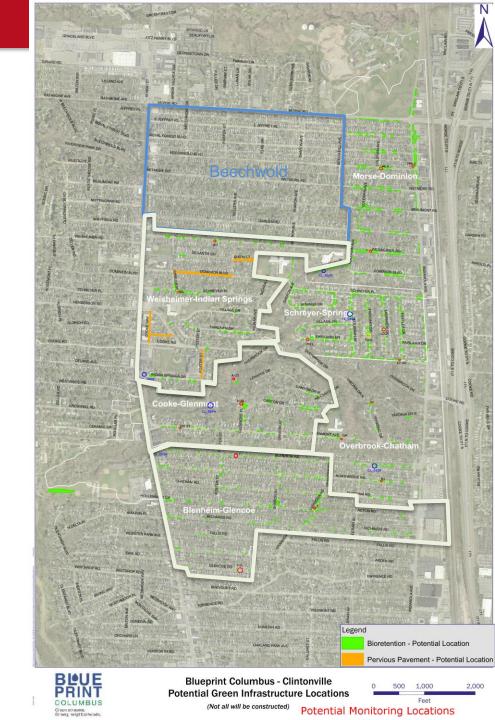

- 1. Simulated storm events in individual bioretention systems
- 2. Real events at catchment scale
 - Analyze quality samples for TSS, nutrients, fecal indicator bacteria, metals, BOD, oil and grease (began 2016)

Blueprint: Clintonville Plans

Six Project Areas


Phased Construction 2017-2019

Control Sewershed


- Beechwold no GI implementation
- Neighborhood characteristics similar

Treatment Sewersheds

- Weisheimer-Indian Springs
 - Extensive permeable pavement installation
- Cooke Glenmont
 - Lowest GI installation
 - Larger facilities
- Blenheim Glencoe
 - Moderate GI implementation

Food, Agricultural, and Biological Engineering

Sewershed Land Use

Sewershed	Area (ac)	Land Use (%)						
		Residential	Commercial	Institutional				
Beechwold	276	95.7	3.6	0.7				
Blenheim	151	88.6	4.9	6.5				
Cooke- Glenmont	29	100	0	0				
Indian Springs	118	75.0	7.6	17.4				

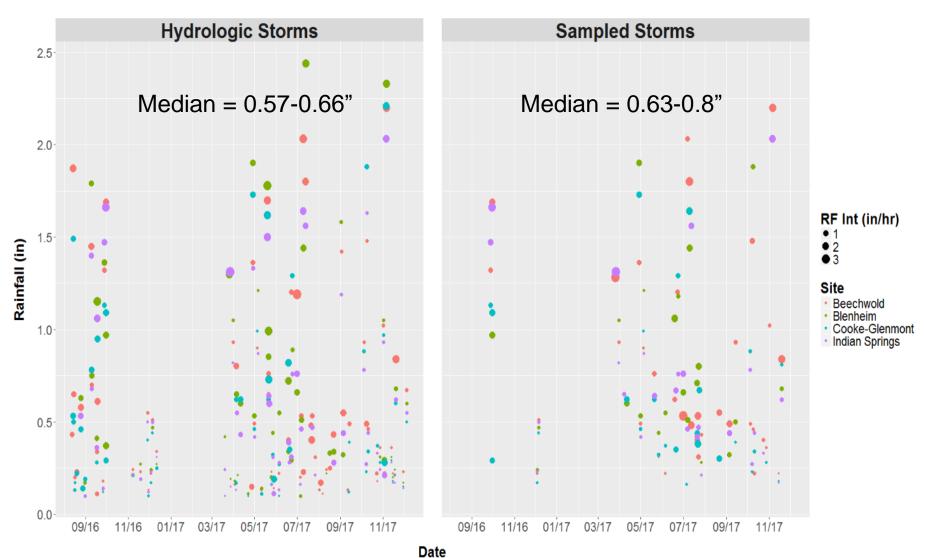
Imperviousness

Sewershed	Units	Impervious	Roofs	Roads	Sidewalks	Driveways	Parking Lots	Pervious
Beechwold		38.2	15.2	11.0	2.1	8.3	1.6	61.8
Blenheim	% of	44.5	16.7	9.9	4.8	9.9	3.2	55.5
Cooke- Glenmont	% of total	30.9	12.5	9.3	1.2	8.0	0.0	69.1
Indian Springs	area	40.3	15.7	8.6	2.7	6.4	7.0	59.7

Construction of SCMs

- Construction
 began summer
 2017
- Data sets collected 2016-2017
- Existing conditions data thus far, no post-SCM implementation data

Stormwater Monitoring


- Continuous rainfall and flow monitoring (baseflow and stormflow)
- ISCO 6712 samplers used to obtain flow proportional, composite samples
- Analyze for nutrients, sediment, metals, bacteria

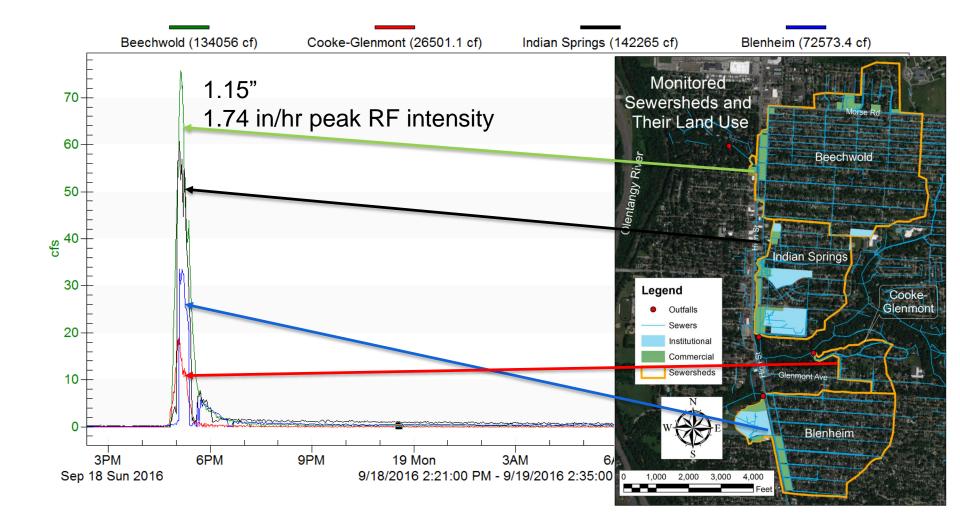
Flow Measurement with Area Velocity Sensors

Rainfall Events

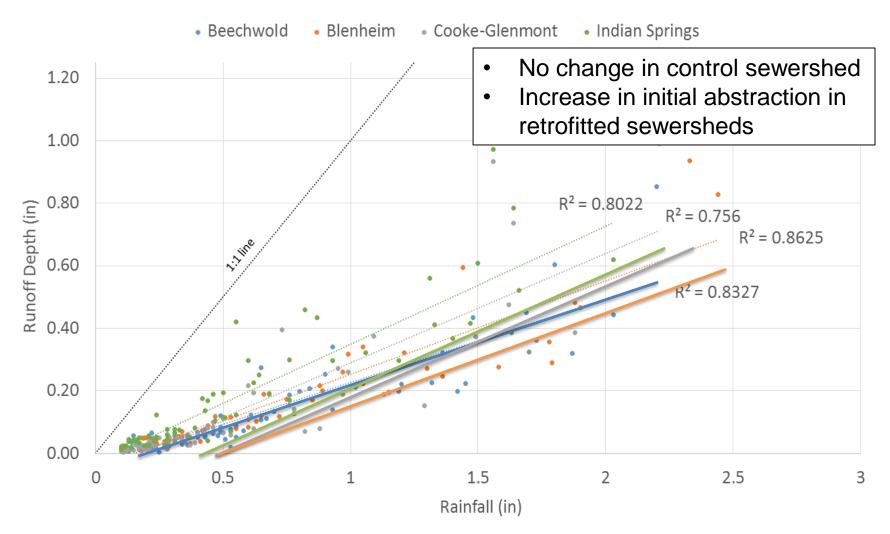
Rainfall/Flow Seasonality

Rainfall

Parameter	Differences		
Peak Rainfall	Summer>Fall		
Intensity	Summer>Spring		
Average Rainfall Intensity	Summer>Fall		
Peak Rainfall Intensity	Summer>Fall		
Average Rainfall Intensity	Summer>Fall		
Peak Rainfall	Spring>Fall		
Intensity	Summer>Fall		
Peak Rainfall	Summer>Fall		
Intensity	Summer>Spring		
Average Rainfall Intensity	Summer>Fall		
	Peak Rainfall Intensity Average Rainfall Intensity Peak Rainfall Intensity Peak Rainfall Intensity Peak Rainfall Intensity Peak Rainfall Intensity		


- Summer intensity generally
 > other seasons
- No difference in rainfall depth

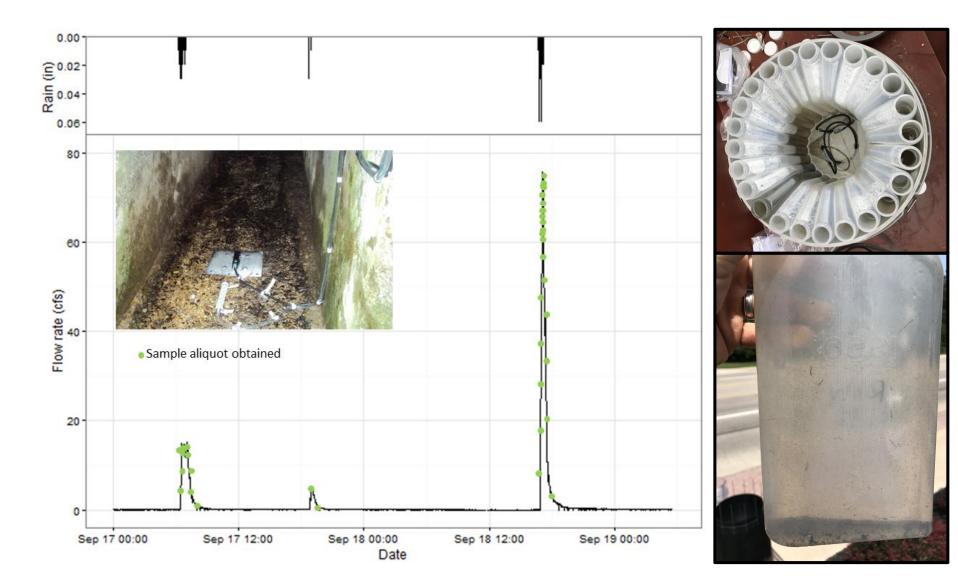
Site	Parameter	Differences	
	Lag-to-Peak	Fall>Summer	
		Fall>Summer	
Beechwold	Flow Duration	Spring>Summer	
		Fall>Spring	
	Time to Peak	Fall>Summer	
	Normalized Peak Flow	Summer>Fall	
Blenheim	Normalized Peak Flow	Summer>Fall	
	Lag-to-Peak	Fall>Summer	
		Fall>Spring	
Cooke-Glenmont	Time to Peak	Fall>Summer	
	Normalized Peak Flow	Summer>Fall	
Indian Springs	Time to Peak	Fall>Summer	
	Normalized Peak Flow	Summer>Fall	


Flow

- Durations longer in non-summer
- · Peak flows higher in summer

Example Storm Event

Runoff Hydrology

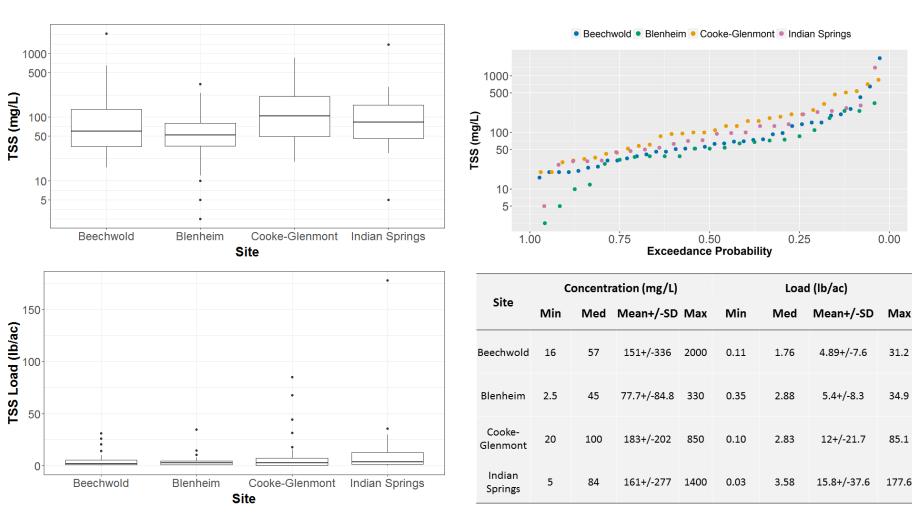


Comparison to Past Residential Runoff Studies

Sewershed or Reference	Runoff Coefficient	Percent Impervious	Soil Texture	Drainage Area (mi²)	
Beechwold	0.2	38.2	Silt Loam	0.43	
Blenhheim	0.23	44.5	Silt Loam	0.24	
Cooke-Glenmont	0.24	30.9	Silt Loam	0.05	
Indian Springs	0.33	40.3	Silt Loam	0.18	
Page et al (2015b)	0.38	60	Sandy	0.002	
Line and White (2007)	0.55	53	Clayey	0.015	
Leopold (1991)	0.35	40	No data	0.25	
Leopold (1991)	0.18	27	No data	1.17	
Barrett et al. (1998)	0.4	37.6	No data	0.04	
Hood et al. (2007)	0.19	29	Sandy Loam	0.021	
Hood et al. (2007)	0.24	32	Sandy Loam	0.008	

Food, Agricultural, and Biological Engineering

Flow Weighted Sampling

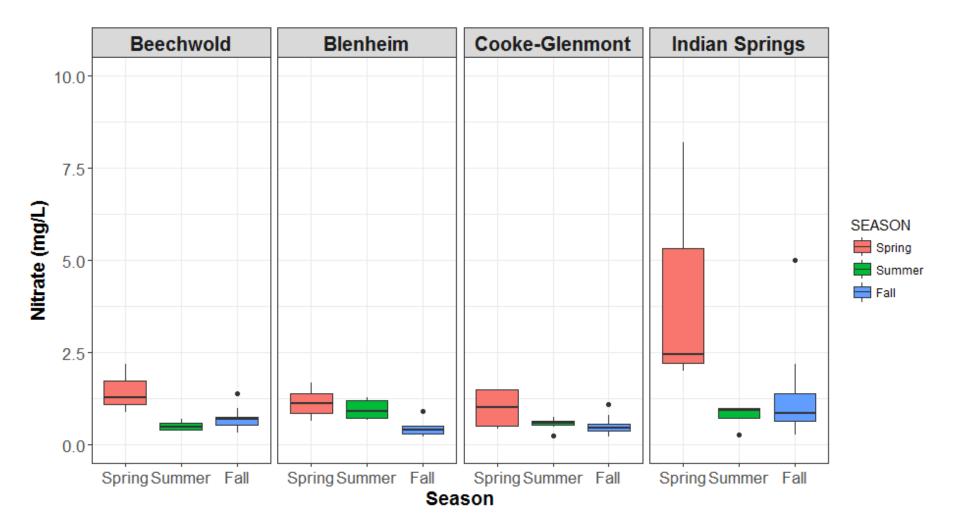


Pollutants Analyzed

Ammonia (mg/L)	Total Phosphorus (mg/L)
BOD 5 Day (mg/L)	Alkalinity (mg/L)
cBOD, 5 Day (mg/L)	TSS (mg/L)
COD (mg/L)	Total Cd (ug/L)
Cyanide (mg/L)	Total Cr (ug/L)
Hardness (mg/L)	Total Cu (ug/L)
Total Kjeldahl Nitrogen (mg/L)	Total Ni (ug/L)
Nitrate (mg/L)	Total Pb (ug/L)
Nitrite (mg/L)	Total Zn (ug/L)
Total Nitrogen (mg/L)	<i>E. coli</i> (cfu/100mL)
Orthophosphate (mg/L)	Oil and Grease (mg/L)

TSS

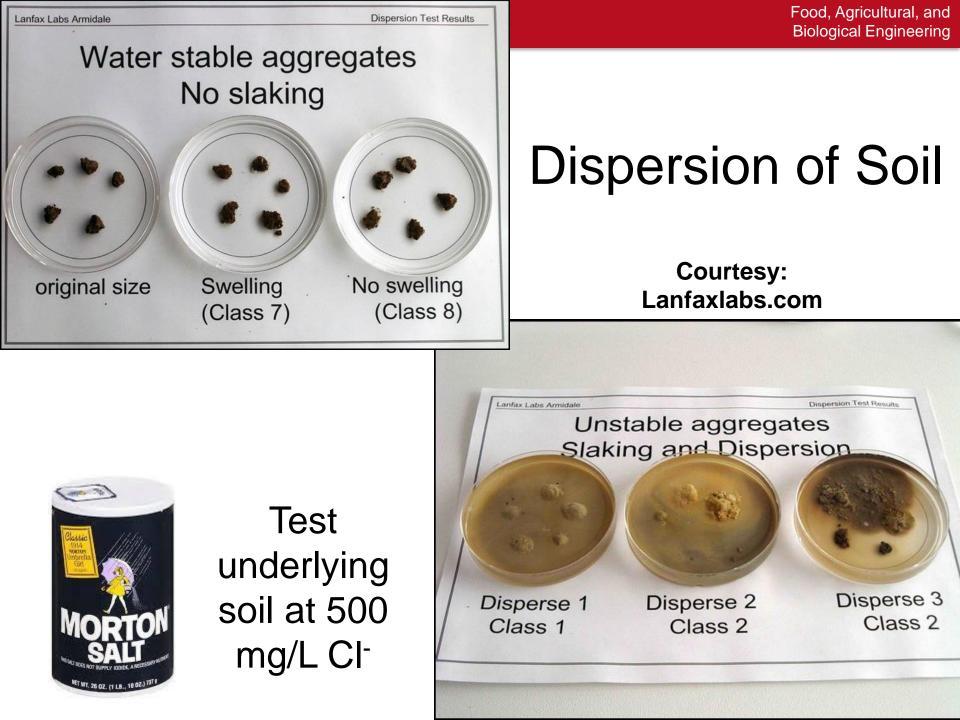
Typical parking lot/road runoff concentration 50-200 mg/L

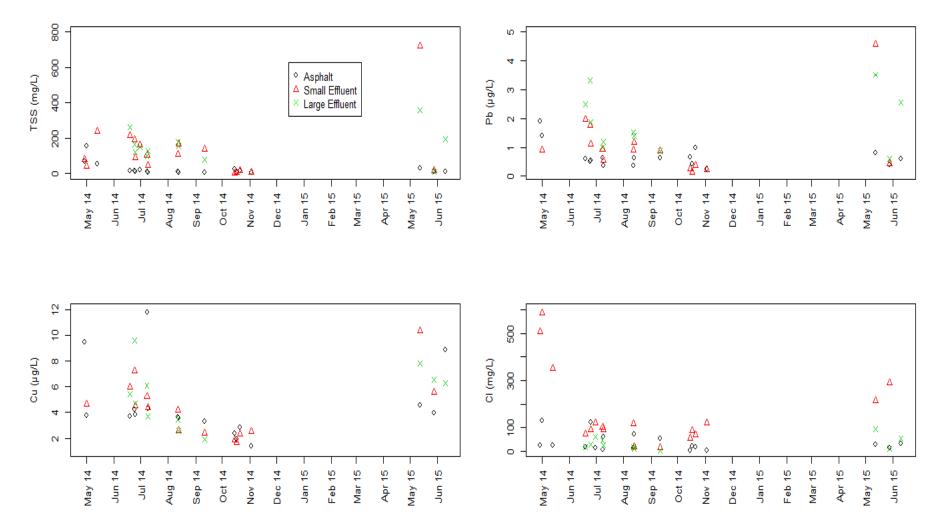


Comparison to Past Studies on Residential Runoff

Pollutant	Beech.	Blen.	Cooke.	I.S.	Page et al. (2015a)	Page et al. (2015a)	Line et al. (2002)	Bedan and Clausen (2009)	Bedan and Clausen (2009)	USEPA (1983)*
TKN	1.10	1.10	1.40	1.10	1.14	1.35	1.48	1.1	1	1.9
NO ₂₋₃	0.71	0.84	0.62	1.03	0.14	0.26	0.49	1.1	0.3	0.74
TAN	0.09	0.08	0.10	0.13	0.06	0.04	0.34	0.16	0.15	-
TN	1.7	1.43	2.04	1.9	1.36	1.39	1.97	2.2	1.3	2.64
ТР	0.24	0.2	0.33	0.21	0.22	0.21	0.4	0.16	0.19	0.38
OP	0.12	0.13	0.11	0.10	0.11	0.11	-	-	-	0.14
TSS	60	52	105	84	42	54	42	22	24	101
Cu	12	10	12	12	13	14	-	9	7	33
Pb	6	8	8	5	35	14	-	1	1	144
Zn	68	55	50	52	70	65	-	36	42	135

Nutrient, sediment, & metals similar to past studies


Seasonality in Concentration

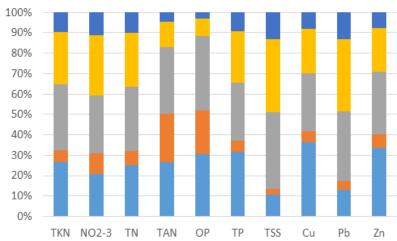

THE OHIO STATE UNIVERSITY

Food, Agricultural, and Biological Engineering

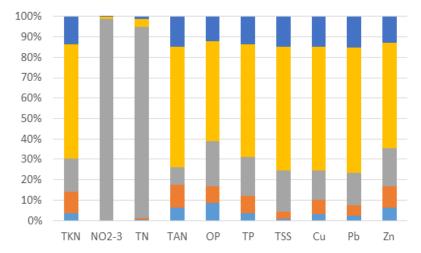
Site	Pollutant	Differences	
Beechwold	Hardness Nitrate	Spring>Fall Spring>Summer Spring>Summer	Seasonality
Beechwold	Nitrite	Summer>Fall	Concentrations
	Alkalinity	Spring>Fall	
Blenheim			Cause?
Cooke- Glenmont			ences g>Fall er>Fall g>Fall g>Fall Summer g>Fall Summer g>Fall Summer g>Fall Summer g>Fall
Indian Springs		churd, comune.	g>Fall Summer g>Fall Summer g>Fall Summer
	Ni	Spring>Summer	Pb Spring>Summer

Porous Pavement Willoughby Hills, Ohio

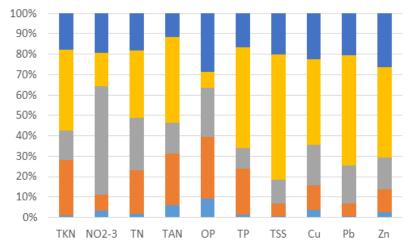
Winston et al. 2016; Water, Air and Soil Pollution


Food, Agricultural, and Biological Engineering

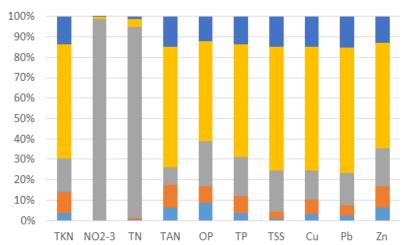
Pollutant Load by Rainfall Depth


<0.25 in 0.25-0.49 in 0.5-0.99 in 1-1.99 in >2 in

Beechwold 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% TKN NO2-3 ΤN TAN OP TP TSS Pb Zn Cu


Blenheim

Cooke-Glenmont


Indian Springs

Pollutant Load by Rainfall Depth

Cooke-Glenmont

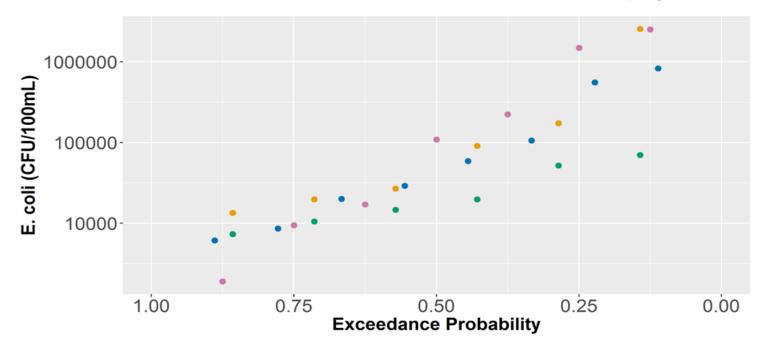
Percent of pollutant load treated with a 0.75" design storm assuming entire sewershed is treated by SCMs

	TAN	TKN	NO ₂₋₃	OP	ТР	TSS	ΤN	Cu	Pb	Zn
Average across all sites	75	72	75	78	71	65	74	72	67	73

The Columbus Dispatch

News Sports Opinion Life & Entertainment Services Contact Subscribe

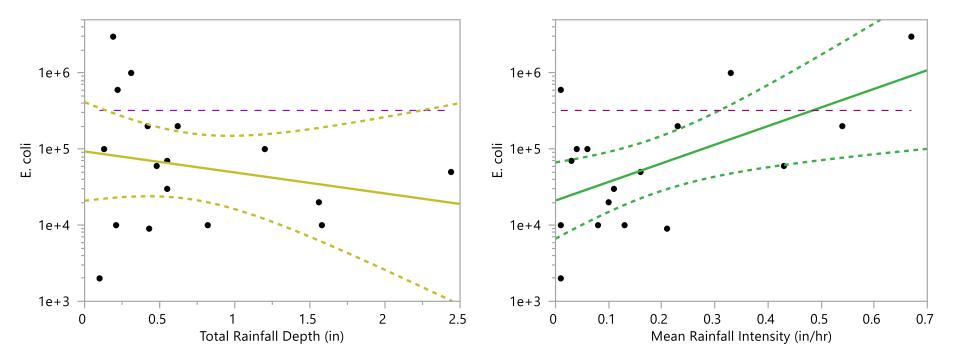
Hot Links: Bob Hunter's Rumblings • Buckeyes football • Medical-marijuana signatures • G

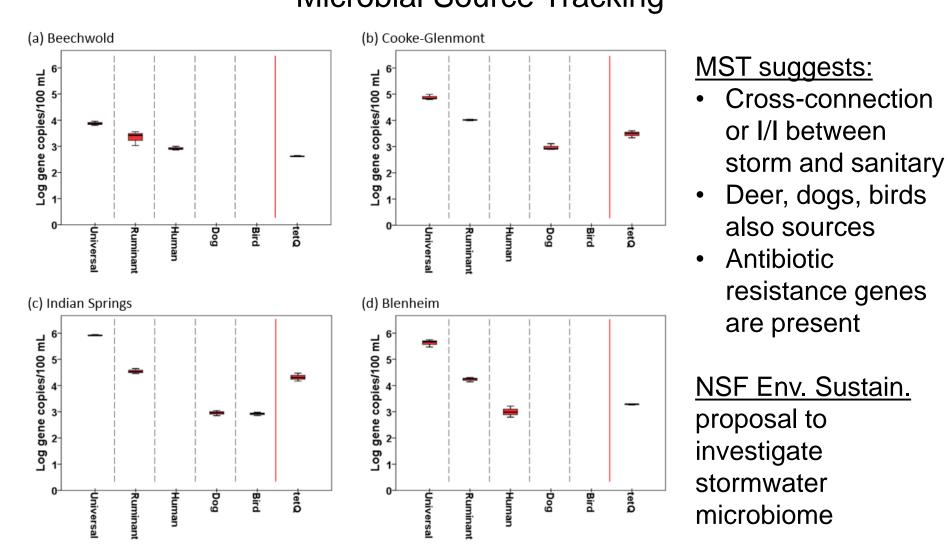

Bacteria making some Ohio beaches no vacation

28 beaches are under health advisories for E. coli

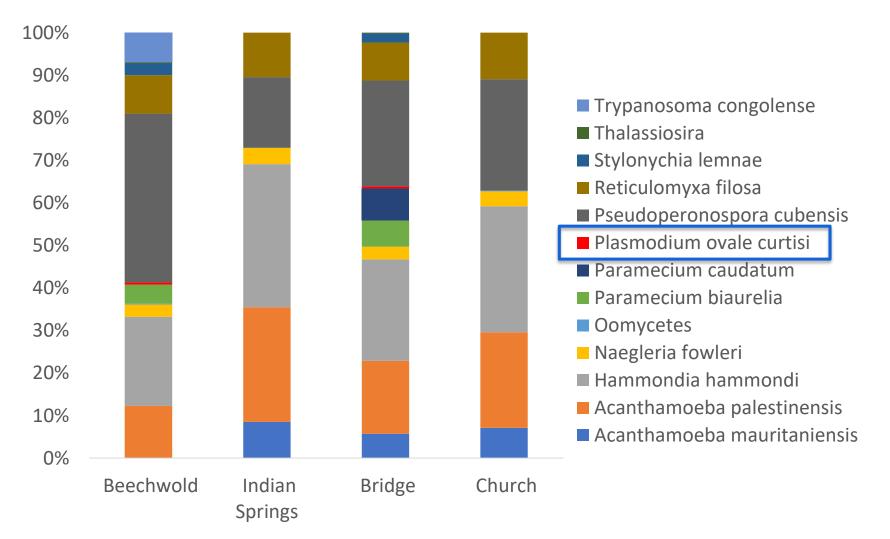
Public Health

Indicator Bacteria


Beechwold Blenheim Cooke-Glenmont Indian Springs


- Substantial variability in *E. coli* concentrations
- Max concentrations 2.5×10^8 CFU/100mL

Food, Agricultural, and Biological Engineering


E. Coli Relationships

Public Health Microbial Source Tracking

Protist Species

Metagenomic Analysis

Blueprint Goals & OSU Research:

- 1 Reduce sewer overflows
 - Analyze storm flows
- 2 Improve water quality
 - Analyze water quality
- 3 Provide habitat
 - Analyze species in gardens
- 4 Improve property values
 - Track home prices
- 5 Stabilize neighborhoods
 - Survey residents

 Ground foraging insects and birds surveyed with <u>pitfall traps</u> and <u>acoustic sensors</u> in 2 systems per subarea and in control areas

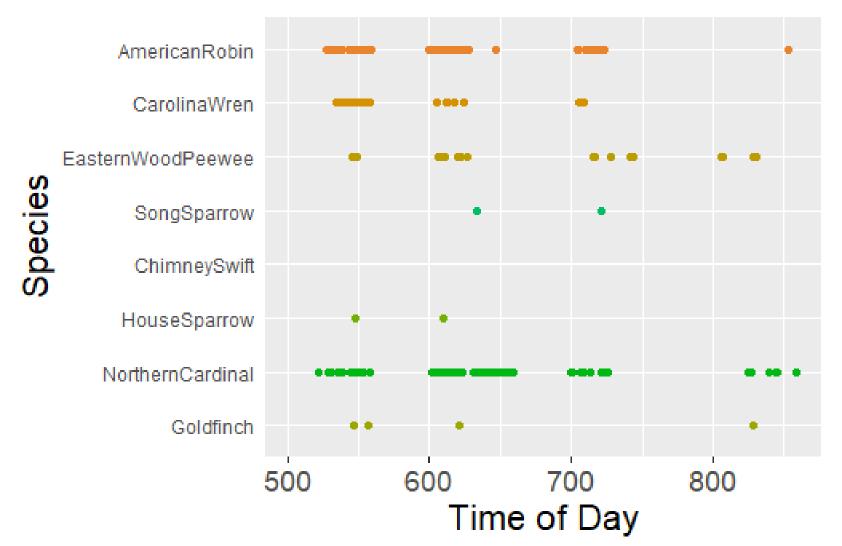
Wildlife Acoustics Songmeter SM4

Call Examples

NorthernCardinal\BLB21965-47.wav	– a ×
File Help	- U X
20000	(+
1000	
	_
-20000 -30000	v -
19.0kHz	[
18.0kHz	
<u>17.0kHz</u>	
16.0kHz 15.0kHz	
<u>15.0kHz</u> 14.0kHz	
13.0kHz	
12.0kHz	
<u>11.0kHz</u> 10.0kHz	
9.0kHz	
8.0KHz	
7.0kHz 6.0kHz	
5.0kHz	
0.05 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.88 2.05 2.25 2.45 2.65 2.85 3.05 3.25	3.4s 3.6s 3.8s 4.0s 4.2s 4.4s ∨

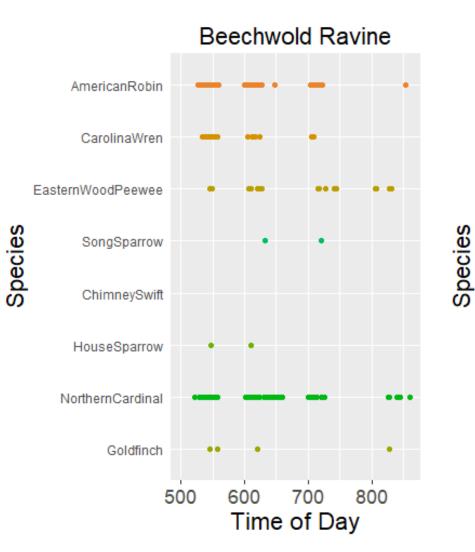
Northern Cardinal

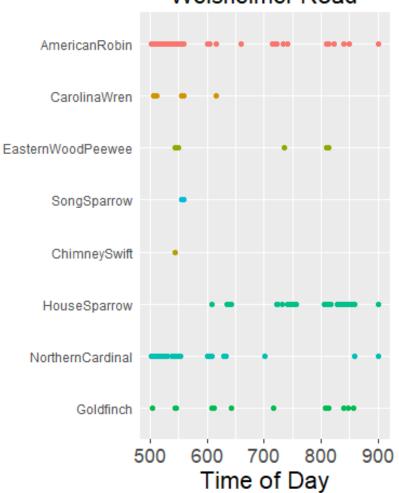
The Ohio State University

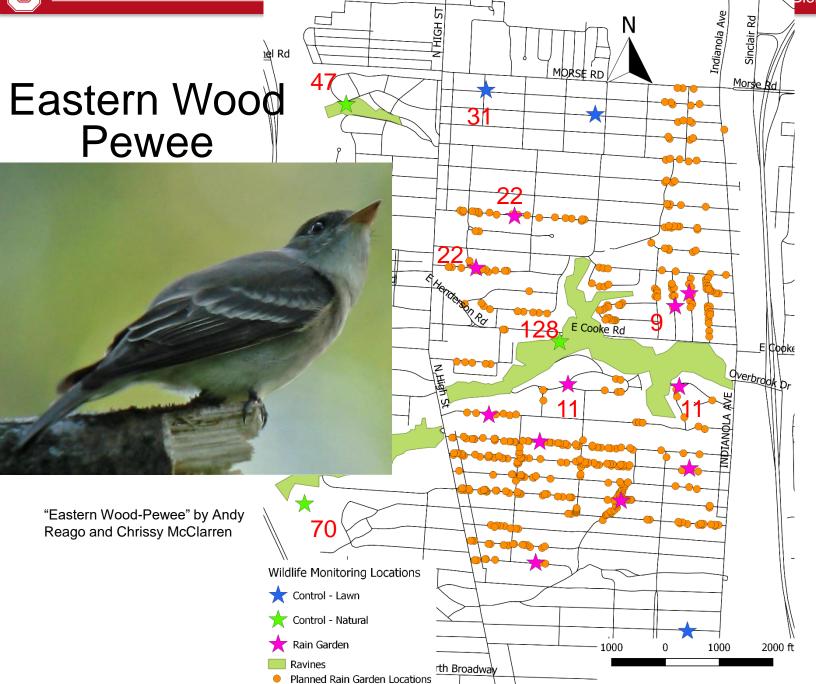

Food, Agricultural, and Biological Engineering

Call Examples

Song Sparrow\BLB6028-04.wav File	– ō ×
19.0H+k 18.0H+k 18.0H+k 15.0H+k 15.0H+k 14.0H+k 13.0H+k 10.0H+k 9.0H+k 3.0H+k 3.0H+k 3.0H+k 3.0H+k 0.0H+k 0.0H <k< td=""> 0.0H<k< td=""> 0.0H<k< td=""> 0.0H<k< td=""></k<></k<></k<></k<>	


Song Sparrow


One Morning at the Beechwold Ravine


Comparison

Weisheimer Road

Food, Agricultural, and Biological Engineering

Blueprint Goals & OSU Research:

- 1 Reduce sewer overflows
 - Analyze storm flows
- 2 Improve water quality
 - Analyze water quality
- 3 Provide habitat
 - Analyze species in gardens
- 4 Improve property values
 - Track home prices
- 5 Stabilize neighborhoods
 - Survey residents

Quantify changes in property values:

- 1. Housing values from auditors website
- 2. Hedonic regression to account for variables (i.e. distance to garden)

Stabilize neighborhoods:

- 1. Surveys of Blueprint residents and control area
- 2. Analyze satisfaction with GI, habits (i.e walking, water use & management, cooperation)

Round 1: Mean response: Support for Rain Gardens (1-5; strongly disagree – strongly agree)

Question	C'ville	Linden
In general, I like rain gardens	4.23	3.15
Rain gardenswould increase the value of my property	3.70	3.00
I would like it if the city installed rain gardens on my property or the property immediately bordering my own	3.39	2.62
I would like it if the city installed rain gardens in my neighborhood, but not on my property or the property immediately bordering my own	2.97	3.18
Existing storm sewers are adequate	2.04	2.92
Rain gardens would be effective in reducing storm water runoff	4.05	3.42
I prefer the city build more storm sewers instead of rain gardens	2.48	3.42

Round 2: Environmental Behaviors/actions Lots of room for improvement

Question	Blenheim	Schreyer	Weisheimer	Morse	Overbrook
I consciously try to limit the amount of water I use for activities around my home (1-5; agree – disagree)	3.88	3.72	3.86	3.82	3.74
Rain gardens (% who <u>don't</u> plan on using)	76%	76%	67%	71%	78%
Rain Barrels (% who <u>don't</u> plan on using)	35%	66%	47%	67%	61%
Using low N/P fertilizers or pesticides (% who <u>don't</u> plan on using)	48%	39%	44%	80%	86%
Conservation landscaping (% who <u>don't</u> plan on using)	56%	61%	44%	62%	59%

Round 2: Mean response - Walking (number of times per...) Lots of room for improvement here too

Question	Blenheim	Schreyer	Weisheimer	Morse	Overbrook
Walk to place of employment (per week)	0.40	0.11	0.02	0.09	0.36
Walk children to school (per week)	0.12	0.19	0.18	0.15	0.09
Walk to an appointment (per month)	0.17	0.01	0.16	0.09	0.05
I would walk more in my neighborhood if there were more greenery	2.47	2.27	2.58	2.54	2.54
Socialize with a neighbor at their house or yours (1-5, daily, weekly, monthly, every few months, once or twice a year, never)	2.73 (weekly – monthly)	2.39	2.63	1.88	2.57

Summary

- Characterized baseline hydrology (continuous) and water quality (storm and base flow)
 - Continuing to collect data as SCMs are installed
 - Data collection through 2022
- Quantifying ecosystem services of SCMs
- Evaluate effects of green infrastructure on property values and neighborhoods

()olumbus

nnovations

roup

Acknowledgements

Jeff Cox, Matthew Repasky, and Melodi Clark at the City of Columbus Division of Sewers and Drainage

Jiyoung Lee and lab group provided microbial analysis

Undergraduate workers: Kathryn Boening, Cody Free, Quinn Harnett, Haley Jenkins, Megan Levine, Viktor Lillard, Lauren Sester, Nate Steele, Patrick Sanders, Anthony Wiley

COLUMBUS

MUSEUM OF **BIOLOGICAL DIVERSITY BORROR** LABORATORY OF **BIOACOUSTICS**

THE CITY OF

Clean streams. Strong neighborhoods.

Any Questions?

More information: Winston.201@osu.edu Wituszynski.1@osu.edu