Highland Park Golf Course Stream Restoration – Making a **Resilient System**

> Joel Bingham, EnviroScience, Inc. Shannon Carneal, RiverReach Construction Paul Kovalcik, NEORSD Matt Lascola, GPD Ivan Valentic, GPD

Project Team

Administration

Engineering and Construction

EnviroScience

Excellence In Any Environment

Sustainable Sports Solutions

Partners

Regional Sewer District

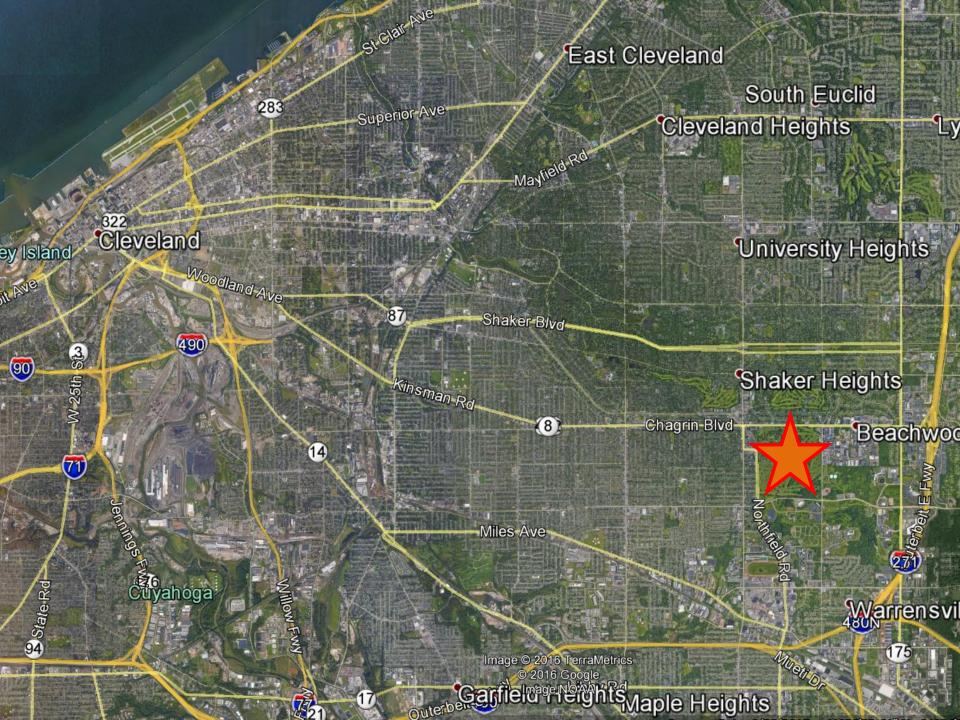
Northeast Ohio

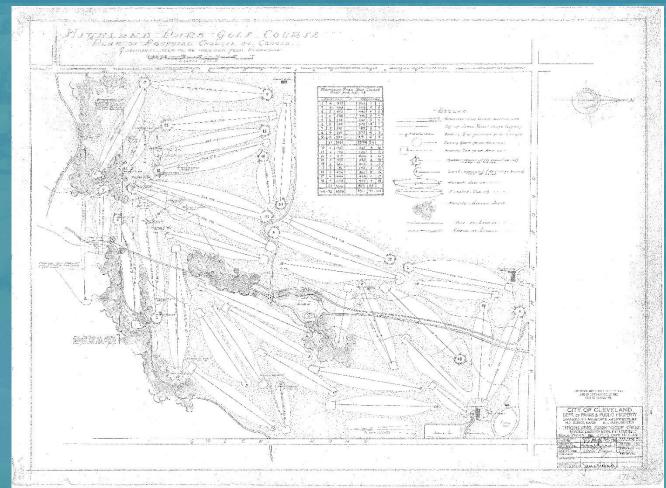
Funding

\$1.35 million Ohio EPA - Water Resource Restoration Sponsor Program (WRRSP)

\$257,000 NEORSD, Regional Stormwater Management Program

\$92,400 USFS, GLRI grant for trees and shrubs





Project Area

Project Area

- 1.7 square mile watershed
- 35% Impervious
- Two reaches
- Roughly 4,300 feet
- Two-acre in-line pond and dam

Northeast Ohio Regional Sewer District

Existing Conditions

Existing Conditions

Existing Conditions

Top of Bank

Bankfull

• Sinuosity = 1

• ER = 1.5

Northeast Ohio Regional Sewer District

- BHR >2.0
- Rosgen B4c

all home which

Project Development

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

) HYDRAULIC »

Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY »

Transport of water from the watershed to the channe

Tr.

FUNCTIONAL COMPONENT	EXISTING CONDITIONS	OPPORTUNITIES
Hydrology and Hydraulics	35% Impervious Surfaces Limited Floodplain Access Channelized system with high velocity and shear. Failing bridges and exposed water lines.	Improve floodplain connection. Improve floodplain connection and roughness to reduce stream energy.
Geomorphology (includes riparian vegetation)	Sinuosity = 1 Entrenchment ratio = 1.5 Bank height ratio = >2 Rosgen B4c Armored vertical banks and floodplain maintained as lawn. QHEI – 55.5	Improve sinuosity Increase the entrenchment ratio. Reduce the bank height ratio. Remove armoring and introduce natural stabilizing vegetation.
Chemical Water Quality (physiochemical)	35% Impervious surfaces One illicit discharge identified. Drain tiles outlet directly into the channel.	Remove the illicit discharge. Plant a dense floodplain buffer to filter GC runoff. Quality riffle habitat for oxygenation and nutrient reduction. Floodplain connectivity for pollutant/sediment processing.
Biological (stream and riparian)	IBI =20 (poor) – three fish species ICI = 24 (Fair)	Construct high quality, stable riffles for macroinvertebrates. Mill Creek Falls and other downstream obstructions limit the fish community.
Social	Active golf course. Failing bridges and exposed water lines. Fairways do not drain after floods.	Maintain or improve play of the course. Remove the failing bridges. Improve fairway drainage.

FUNCTIONAL COMPONENT	GOALS	OBJECTIVES
Hydrology and Hydraulics	Manage urban hydrology. Maintain velocities to allow passage of aquatic life. Improve course drainage after storms.	Maintain riffle velocities ≤3 feet/second. No drop features >0.3 feet at baseflow. Maintain 10yr Q within the constructed floodplain.
Geomorphology (includes bank vegetation)	Improve riparian habitat and riffle/pool development. Remove failing gabions and stone walls and prevent bed and bank erosion.	Expand riparian buffer to >10m where feasible. Significant amount of pool habitat >70cm. Bank height ratio ≤1.0 and floodplain width >2.0 times riffle width where feasible. Vertical and horizontal stability. Improve stream pattern.
Chemical Water Quality (physiochemical)	Support water quality.	Dense vegetation on the banks and floodplain. High quality riffle habitat. Improve floodplain connectivity Partial dam removal.
Biological (stream and riparian)	Create a connected, longitudinal stream and riparian corridor.	Construct high quality, stable riffles for macroinvertebrates. Increase the diversity of in-stream and riparian habitat.
Social	Stabilize and protect existing infrastructure. Maintain golf course play.	Protect or remove bridges and water lines. Improve public appreciation. Improve fairway drainage.

Design and Construction

Design Approach

- Utilize the existing valley through a combination of a Raised Grade and Floodplain Creation approach
- Integrate stream patterns into golf course play, bridges, utilities and water lines
- Design intention was to contain the 10Yr storm within the created floodplain
- Modify the in-line pond with partial dam removal

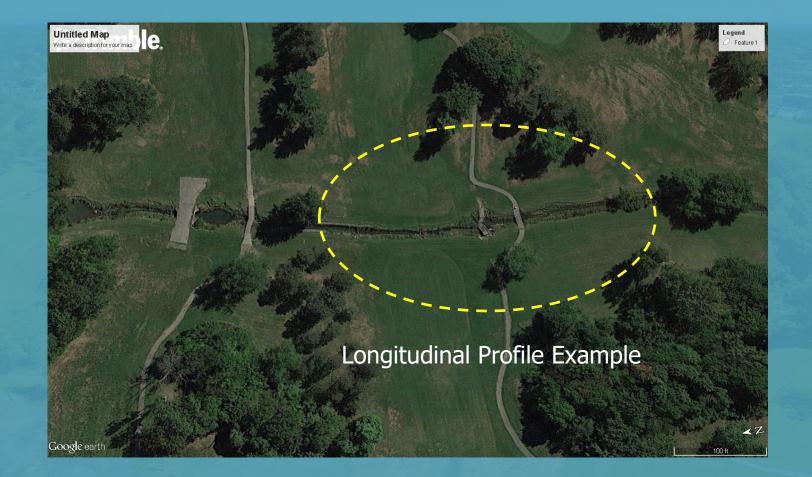
Stream Pattern Pre and Post Construction

- Pattern influenced strongly by two factors
 - Bridges
 - Golf play
 - Consulted with golf course architect and local management staff

Northeast Ohio Regional Sewer District

Golf Play and Bridges

Google earth

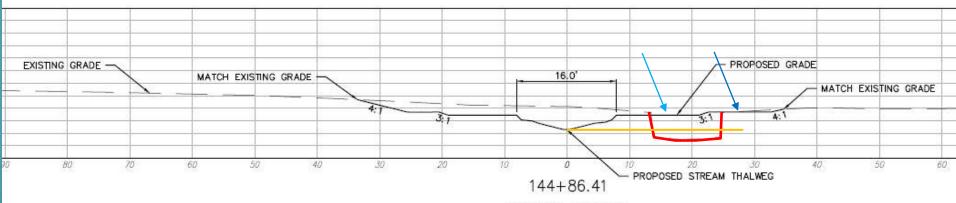


Shifted pattern to help golf play

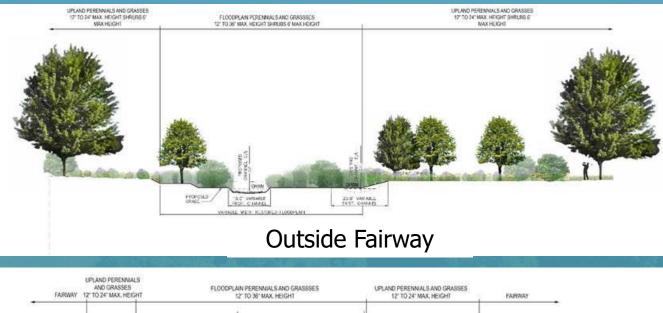
- Added sinuosity • between fairways
 - Expanded floodplain
 - Denser plantings
 - Wetland features
- Added tee boxes with spoil
- Moved one bridge due • to shift in pattern and width of existing bridge

Longitudinal Profile

	PROPOSED-	
		/ (DECK DEPTH UNKNOWN)
COLLAPSED. BRIDGE- (\$IZE_UNKNOWN)		
	/ 006+6	. /
	·	
	22	
		-0.86%



Dimension


- Based on three factors
 - 1. Existing morphologic indicators
 - 2. Regional characteristics
 - 3. Hydraulic modeling
- Floodplain limits and elevation influenced mostly by hydraulic modeling

RIFFLE LOCATION

Existing In-Line Pond

- Shallow pond infilled with sediment
- Poor functionality & water quality
- No use for golf course
- Thermal impact

Restored In-Line Pond

- Stream restoration for continued sediment transport
- Functional floodplain
- Thermal impacts removed
- Storm water accessible to remnant pond area-converting to wetland.
- Dam partially removed but left as grade control

Constructability

Advantages

- One owner
- Ample space for spoils
- Staging and access
- Opportunities for improvements

Challenges

- Safety
- Schedule
- Bridges
- Utilities/Irrigation
- Flashy Hydrology
- City Bridge
- Vegetation
- Communication
- Bedrock

Northeast Ohio Regional Sewer District

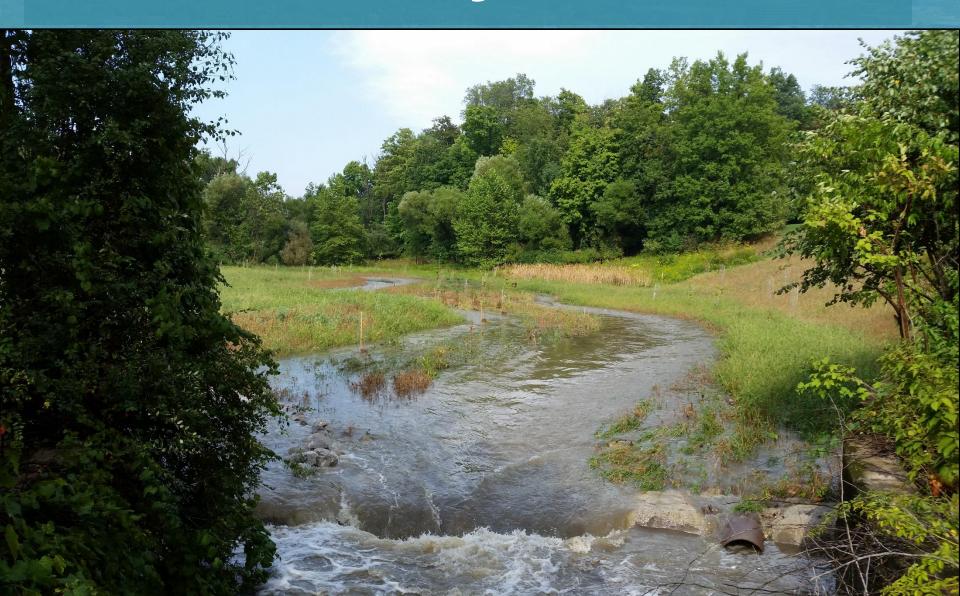
Regional Sewer District

Northeast Ohio Regional Sewer District

Northeast Ohio Regional Sewer District

Results

H&H Objectives


- Maintain riffle velocities ≤3 feet/second.
- No drop features >0.3 feet at baseflow.
- Maintain 10yr Q within the constructed floodplain.

H&H Objectives

H&H Objectives

Approx. 10yr storm

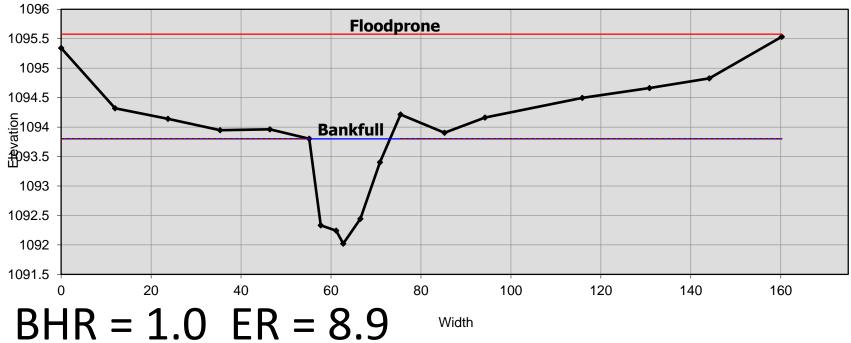
Geomorphology Objectives

- Riparian buffer >10m where feasible.
- Significant pool habitat >70cm.

QHEI Metric	RM 11.52 (2011/2017)	RM 10.70 (2011/2017)
Substrate	16.5/18	17/18
In-stream Cover	7/7	12/8
Channel Morphology	10/11	6/11
Bank Erosion/Riparian Zone	3/6	4/6
Pool/Glide and Riffle/Run		
- Pool Quality	10/8	5/8
-Riffle Quality	5/5	3/5
Gradient	4/4	4/4
Total	55.5/59	51/60

NAGEMENT

Geomorphology Objectives • Target bank height ratio ≤1.0 and floodplain width >2.0 times riffle width where feasible.



Esri, HERE, Garmi

Geomorphology Objectives

• No significant change in stream profile over time.

Geomorphology Objectives

STA 117+86.23	Elevation
Construction Drawing	1084.92
April 12, 2017	1084.91
March 23, 2018	1084.79
	-0 13

STA 124+92.64	Elevation
Construction Drawing	1079.22
April 12, 2017	1078.91
March 23, 2018	1079.02
	-0.20

STA 106+56.51	Elevation
Construction Drawing	1093.19
April 12, 2017	1092.71
March 23, 2018	1092.70
	-0.49

Water Quality Objective

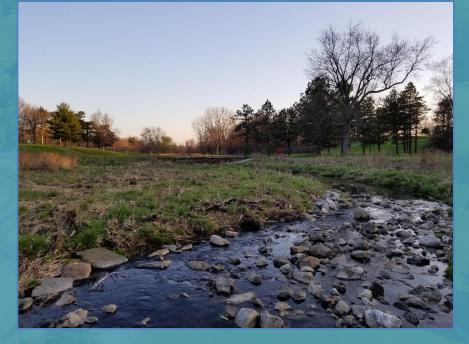
 Support good water quality -Discharge tiles into the floodplain -Floodplain access for processing pollutants and sediment. -Plant a dense riparian buffer. -High quality riffle habitat.

Biological Objective

Support biodiversity by providing highquality in-stream and riparian habitat.
Stable riffles to support the macroinvertebrate community.
High quality fish community precluded by downstream barriers.

Protect or remove bridges and water lines.

Improve fairway drainage.Improve public appreciation.



Pre-construction

Pre-construction

Pre-construction

Pre-construction

What we might have done differently....

Design Phase

Construction Tolerances

Adaptive Management

Stakeholders and Project Partners

Two-year Plant Warranty

Irrigation Lines and Utilties

Northeast Ohio Regional Sewer District

Long-term O&M Plan

Highland Golf Course Stream Restoration Operation & Maintenance Manual

EnviroScience

Date: March 2017 Prepared By:

RiverReach

Construction

Northeast Ohio Regional Sewer District

Opportunity at the Pond

Northeast Ohio Regional Sewer District

Summary