DETENTION BASIN RETROFITS ARE NOT JUST FOR HYDROLOGY ANYMORE

2018 Ohio Stormwater Conference, Sandusky, OH

Jim Goodrich, Rajib Sinha, John Hall, and Bob Hawley May 11, 2018

Presentation Overview

- 1) Retrofit Device Background
 - Recent hydrologic assessment
- 2) Water Quality Treatment Media Evaluations
 - Pilot Scale Set-up
 - Media

EPA

- Contaminants
- 3) Data Results
 - Performance/Breakthrough

Retrofit Device Hydrologic Update

Site Selection

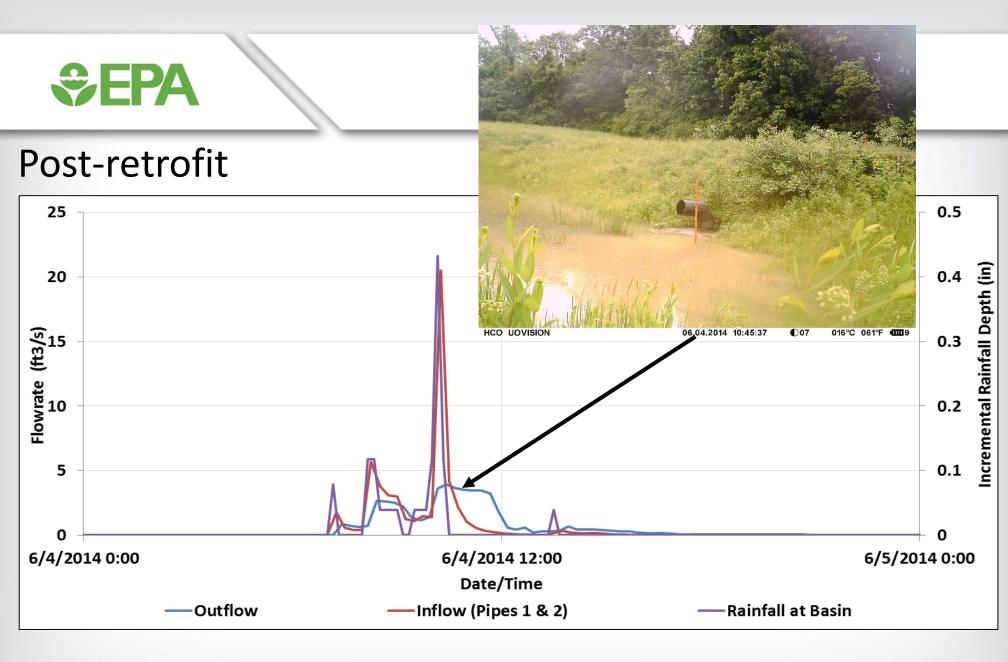
- Large Industrial Property
 - ~31 acres, 52% impervious
- Conventional Detention Design
 - Peak Matching for 2, 10, 50, 100-year design storms

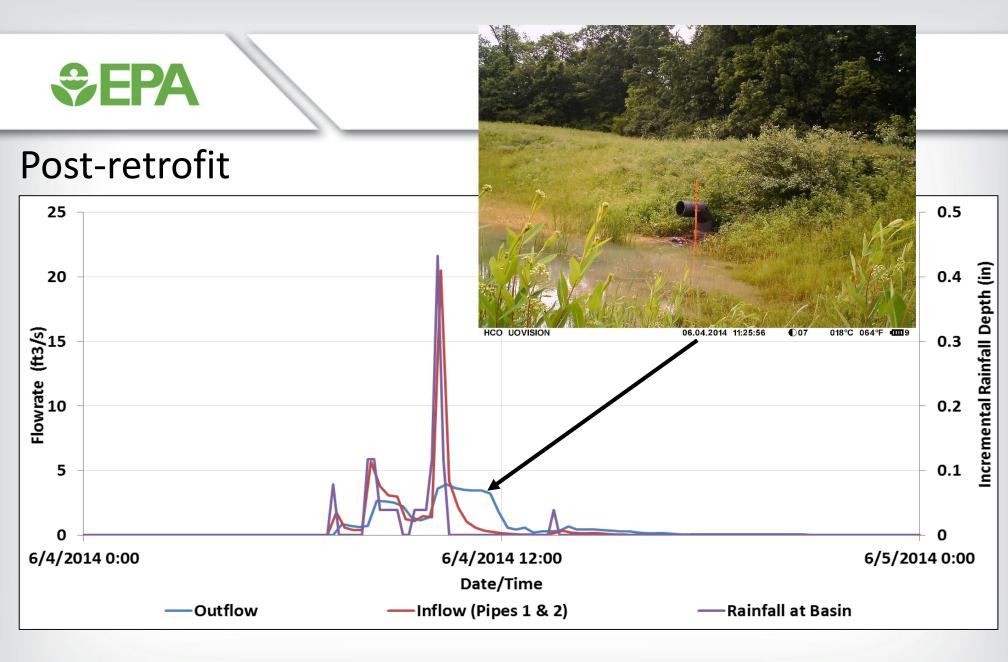
Site Installation

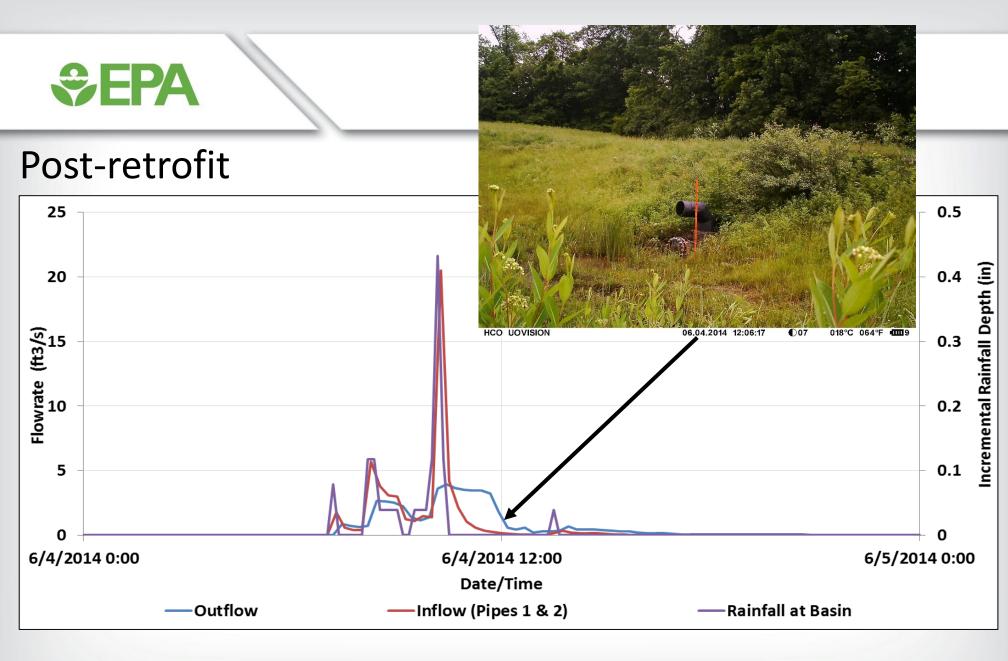
Restricted Release for Most Storms

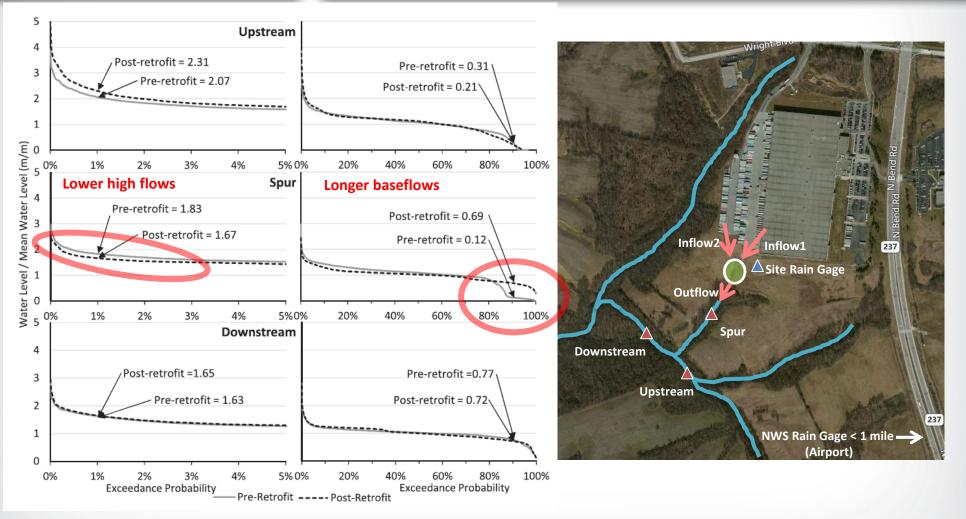
- 75% Restriction of 24" Outlet
- Reduced stream erosion
- Enhanced water quality treatment

Bypass for Large Events


- Maintain Flood Control Performance
- 18" Bypass at 3' above inlet of 24" inlet


Inexpensive


 No Heavy Equipment or Regrading Required



Set EPA

Restoration of High and Low Flows

Adapted from Hawley et al. (2017)

Restricted High Flows Reduces SEPA Streambed Erosion 100% **Upstream (Control)** Biological -11/30/2016 Coarsening 50% Physicochemical Geomorphology 0% **Hydraulics** 100% Hydrologic Spur (Retrofit) -12/18/2013**Stormwater Management** 50% Aggrading 0% 100% Downstream -12/18/2013 5/22/2017

Percent Passing

Percent Passing

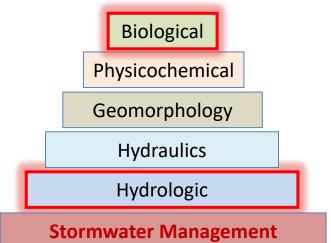
Percent Passing

50%

0%

10

Diameter (mm)


100

1000

12

Restored Baseflows Supports Ecological "Lift"

~Dozen native minnows in 1st pool immediately downstream of the outfall (2 circled). Flow was evident coming out of the basin despite the relatively dry/hot week

- Incorporate <u>water quality treatment</u> into stormwater hydrologic control
- Provide <u>multiple co-benefits</u> for routine storm events and decontamination responses to natural and man-made incidents

Test & Evaluation Facility - Media Evaluations -

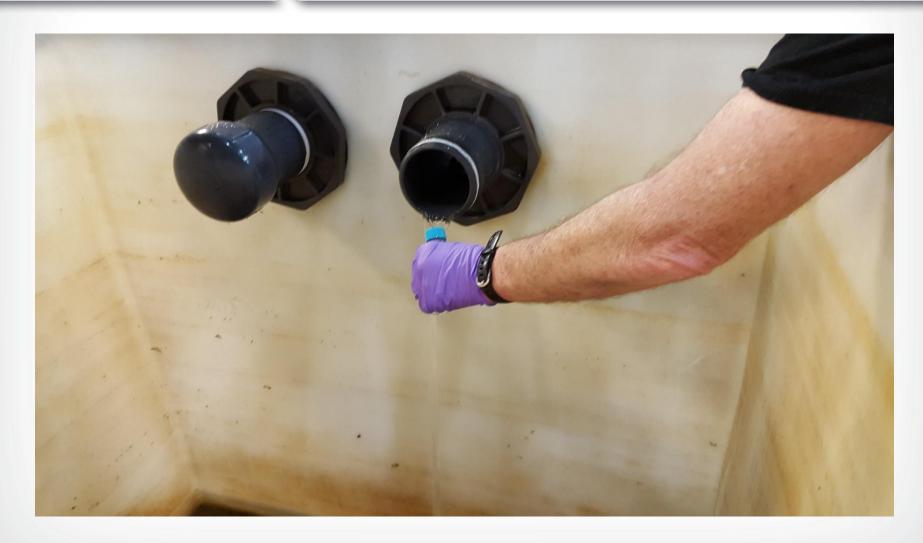
Set EPA

Media Evaluations

- Natural and man-made media
 - Various coatings
- Flow Rates by Falling Head
 - Model breakthrough
- Water Quality Contaminants
 - Radioactive Surrogate
 - Microbial Surrogate
 - Fertilizer
 - Petroleum

SEPA

Example Media



Switchgrass

Coated Gravel

SEPA

Contaminant Injections

Set EPA

Media Experiments

	Media Tested	Description	Target Contaminants	
	Coated Gravel	#4 stone coated with an adsorbent media.	Nutrients (N&P)	
	Switchgrass	Chopped into ~6 inch strips and placed in a mesh sock.	Nutrients (N&P) Radioactive compounds Bacteria	
	Granular Activated Carbon	Activated carbon in a sock.	Nutrients (N&P) Organic compounds Radioactive compounds	
	Iron Oxide Media	Granular and coarse activated ferric oxide.	Metals (e.g., arsenic) Bacteria	
	Clinoptiolite	Natural zeolite - microporous arrangement of silica and alumina tetrahedral.	Metals	
	Sintered Metal	Adsorptive sintered metal coated onto a substrate and placed in a sock.	Metals Radioactive compounds	20

SEPA

Time To Filter Breakthrough

Permeability by Falling Head

 $K = (a / A^*t) \ln (h_1 / h_2)$

Where:

K = coefficient of permeability.

a = cross-sectional area of the standpipe.

A = cross-sectional area of the sample.

t = elapsed time increment.

 h_1 = height of water at the beginning of time increment in inches.

 h_2 = height of water at the end of time increment in inches.

Coefficient of Permeability

SEPA

1.5" Rock: 14.7 cm/sec (28.9 ft/min)

Coated Gravel: 5.87 cm/sec (11.55 ft/min)

Switchgrass: 2.45 cm/sec (4.82 ft/min)

Granular Iron Oxide: 0.45 cm/sec (0.89 ft/min)

Coefficient of Permeability

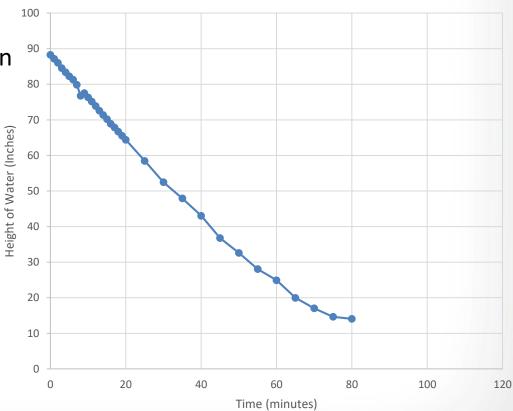
Generic Reference	k		Time to Drain (vs. Reference)	Apparatus
Reference - 1.5" Rock	28.90	ft/min	1	Pilot Test
Coated Gravel	11.55	ft/min	3	Pilot Test
Switchgrass	4.82	ft/min	6	Pilot Test
Granular Iron Oxide	0.89	ft/min	32	Burette
Activated Carbon	0.68	ft/min	43	Pilot Test
Natural Zeolite	0.63	ft/min	46	Pilot Test
Iron composite metal	0.44	ft/min	66	Burette
Sintered Metal with Cu	0.39	ft/min	74	Burette
Powdered Iron Oxide	0.15	ft/min	193	Pilot Test
Powdered Reagent Mix	Very small		Very Long	Pilot Test

In-Tank Falling Head Tests

 Media with coated gravel removed from the field after 2 years of operation.

SEPA

- Placed inside a 5,000 gal tank.
- Used to measure permeability using falling head tests.


In-Tank Falling Head Tests

Coefficient of permeability = 5.49 ft /min

Pilot Test K calculated = 11.55 ft/min

About a two-fold reduction of permeability observed.

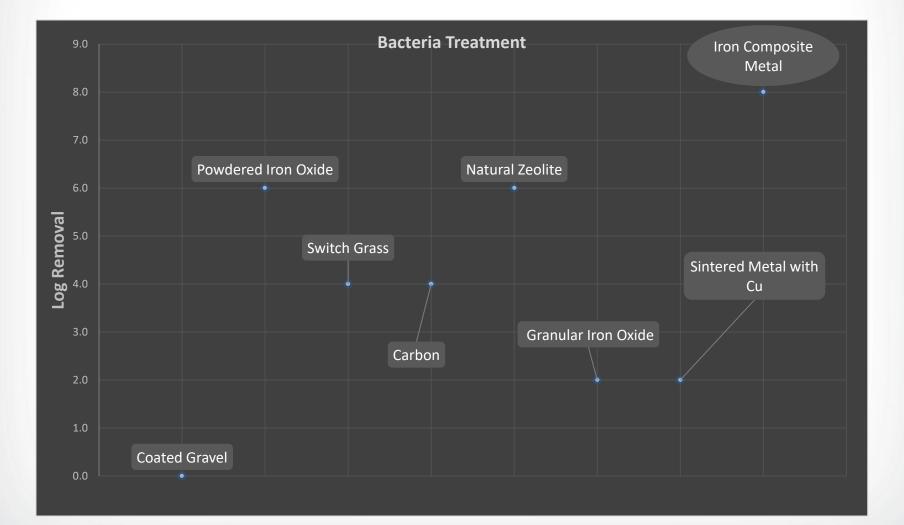
EPA

Height of Water (inches) vs. Time (mins)

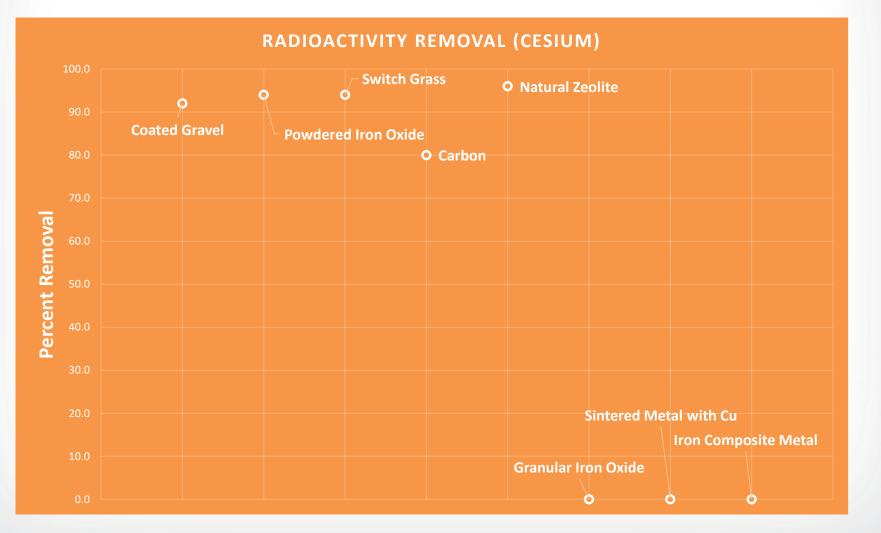
SEPA

Contaminant Removal Tests

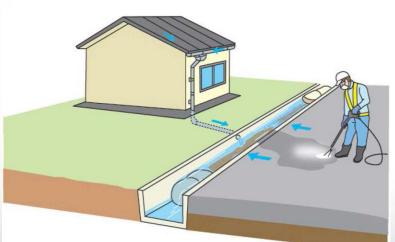
	Nutrients				Radioactive	Bacteria
Parameter	Total N	NH3-N	Total P	PO4-P	Cesium	E. coli
Description	% Removal	Log Removal				
Coated Gravel	90.0	78.0	100.0	86.0	92.0	0.0
Powdered Iron Oxide	76.0	78.0	100.0	98.0	94.0	6.0
Switchgrass	92.0	76.0	64.0	90.0	94.0	4.0
Activated Carbon	94.0	76.0	90.0	84.0	80.0	4.0
Natural Zeolite	94.0	80.0	88.0	86.0	96.0	6.0
Granular Iron Oxide	66.0	74.0	100.0	100.0	NT	2.0
Sintered Metal with Cu	72.0	78.0	56.0	54.0	NT	2.0
Iron Composite Metal	80.0	80.0	100.0	100.0	NT	8.0


Nutrients Removal

Phosphorous Removal


Sepa

E. Coli Removal

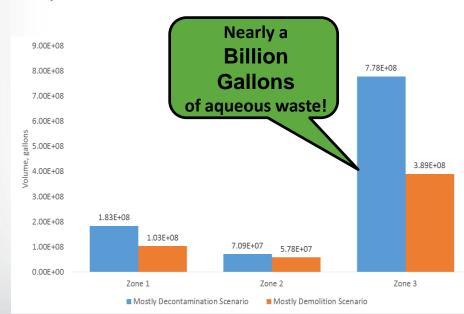


Radioactive Compound Removal

Generation of Contaminated Stormwater

- Intentional (e.g. terrorist attacks) and unintentional (e.g. natural disasters, industrial spills, land use, etc.)
 - Washdown activities involving CBR agents from indooroutdoor areas
 - May include water from decontamination activities such as extinguishing industrial fires
 - Runoff during precipitation events prior to or during decontamination activities

SEPA


Decontamination Incidents

How much contaminated water is generated?

Aqueous waste estimation:

⊗EPA

 Both scenarios (decontamination and demolition) generate significant volumes of contaminated wash water that may require special treatment or disposal.

€PA Example Watershed Integration Mall Interstate Railroad Legend South Fork Watershed 16 sq. mi. Streams 245 detention basins BCCD Monitoring Sites **Detention Basins** 460 ac-ft of total storage 165 Dry Basins 0 80 Wet Basins 0

SOUTH FORK GUNPOWDER DETENTION AND RETENTION BASINS

33

SOUTH FORK GUNPOWDER DETENTION BASIN RETROFIT ANALYSIS BOONE COUNTY CONSERVATION DISTRICT

0.5

0

2 Miles

Next Step – Long Term Field **Applications**

Set EPA

Retrofit Benefits Summary

- Base Flow Restored 'ecologic lift'
- Water Quality Improvement
 - Many media options available to fit contaminant in question
 - Minimal O&M

€ FPA

 Strategic stormwater infrastructure protection approach can provide benefits to daily operation and emergency response

Acknowledgements

Aptim Government Solutions, LLC: Greg Meiners Sue Witt Nicole Sojda LM Narasimman Gune Silva

Sustainable Streams, LLC: Katie MacMannis

EPA

Disclaimer: The U.S. EPA through its Office of Research and Development funded the research described in this presentation. It has been reviewed by the Agency but does not necessarily reflect the Agency's views. No official endorsement should be inferred. EPA does not endorse the purchase or sale of any commercial products or services. This project was supported in part by an appointment to the Internship/Research Participation Program at the National Homeland Security Research Center, Water Infrastructure Protection Division, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.