

ADVANCED DEM APPLICATION TO ENHANCE STORMWATER MODELING

Qiuli Julie Lu, Hazem Gheith, Tiantian Xiang ARCADIS, Columbus, OH, USA Gregory Barden City of Columbus, Columbus, OH, USA

2018 Stormwater Conference Sandusky, OH – May 10th 2018

Hazem Gheith, Ph.D., P.E. Qiuli Julie Lu, Ph.D., P.E.

- H&H modeling
- WW Master Planning
- SSOs and CSOs Mitigation
- RDII Source Reduction Program
- Green Infrastructure Program

Imagine the result

Agenda

- Integrated Plan Objectives
- Modeling at the Source
- Newton-Bedford Case Study
- Green Infrastructure Program

Integrated Plan Objective

Sanitary System:

- Mitigate sewage overflowing to receiving waters, by reducing excessive rain driven inflow and infiltration (RDII)
 - Roof Redirection
 - Storm Sump Pump

Stormwater System:

- Reduce pollution to the receiving waters and mitigate backups and flooding deficiencies
 - Green Infrastructure (GI)

Detailed resolution calculations are needed for an educated Integrated Plan

Runoff and RDII Sources

Green Infrastructures in Urban Setting

Agenda

- Integrated Plan Objectives
- Modeling at the Source
- Newton-Bedford Case Study
- Green Infrastructure Program

Modeling Approach

- Use wealth of available GIS data
 - DEM
 - Streets
 - Buildings
 - Sewers
- Delineate runoff catchments
 - GI, Storm Inlets, or Manhole Resolution
- Split sub-sewersheds into the independent hydrologic features (subareas)

Integrated Plan Model Setup

- One model platform that integrates sanitary and storm systems
- Suitable for Integrated Plan planning
- Programs since 2012
 - Columbus (SWMM)
 - Cincinnati (SWMM)
 - Indianapolis (ICM)
 - Buffalo (SWMM)
 - DC Water (SWMM)
 - Ft Wayne (SWMM)
 - City of Westfield (ICM)
 - City of Marysville (SWMM)

Field Data Collection

Discharge Locations	Quantity	Distribution of Outlets (%)	
Within 6' of Home Perimeter	1329	57%	
Greater than 6' of House Perimeter - Lawn	127	6%	
Greater than 6' of House Perimeter - Street/Curb Cut	220	10%	
In-Ground (Discharge Location Unknown)	626	27%	
TOTAL:	2302	100%	

Surface Hydraulics - Street Channel

Calculate Street profile using LiDAR and ArcGIS 3D Analyst

Sink Analysis for Depression Storages

Depression Storage Curves

	FID	Shape	ld	Elevation	area	
+	0	Polygon	46699	786.8	1.7	
Ĩ	2	Polygon	46719	786.9	10.2	
٦	1	Polygon	46719	787	18.6	
T	4	Polygon	46720	787.1	28.8	
T	3	Polygon	46720	787.2	43.4	
T	5	Polygon	46720	787.3	61.8	
1	6	Polygon	46720	787.4	87.1	
1	7	Polygon	46741	787.5	126.6	

Automate depth-storage curve generation

Storm Inlets

- Include storm inlets limitation by survey, google maps, or estimate effectiveness through flow meters calibration
- Critical for representing street runoff, flooding and storm/combined sewers backups

Agenda

- Integrated Plan Objectives
- Modeling at the Source
- Newton-Bedford Case Study
- Green Infrastructure Program

Case Study – Blueprint Columbus

- Runoff catchment delineation per storm inlet
- LiDAR, Streets, Buildings, and downspouts condition survey used to generate the subareas

Model Overview

Model Platform Flow Prediction Quality

Flow monitoring data available October 2009 – February 2010

October 2009 Events

December 2009 Events

January 2010 Events

Agenda

- Integrated Plan Objectives
- Modeling at the Source
- Newton-Bedford Case Study
- Green Infrastructure Program

GI Program Objectives

- Water Quality, 20% TSS removal (typical year)
- Water Quantity, manage 20% of 0.75" rainfall on the GI contributing area
- Mitigate negative impact resulting from RDII reduction,
 - No additional storm water surface spreading
 - No flow increase to downstream sewers

Continuum of Favorable Sites for GI

GI Sites and Types

Model Setup – Add Green Infrastructures

House Buffer Area (Splashing)

Roofs Splashing

ouse

fer Area

Roofs to

Lawn

Split Garage

- GI unit can be placed/defined in the H/H Model based on the GI type and placement location in the catchment

GI Performance in TY

GI Unit	GI Footprint (SF)	Total Inflow Volume (CF)	Overflow Volume (CF)	Captured Volume (MG)	% Captured Volume	Captured Volume CF /Footprint SF
1	41.60	39,357	34,092	5,265	13%	127
2	69.61	72,270	60,219	12,051	17%	173
3	49.61	29,891	23,315	6,575	22%	133
4	72.57	58,006	48,269	9,737	17%	134
5	55.80	42,742	35,665	7,077	17%	127
6	89.60	16,153	7,703	8,450	52%	94
7	37.59	11,456	7,308	4,148	36%	110
8	121.31	12,002	4,985	7,017	58%	58
9	89.34	27,309	18,220	9,089	33%	102
10	89.34	19,592	12,442	7,150	36%	80
11	33.76	36,669	31,764	4,906	13%	145
12	67.87	21,457	16,951	4,507	21%	66
13	117.87	17,987	12,028	5,960	33%	51
14	117.87	17,786	10,298	7,489	42%	64
15	41.64	31,737	23,495	8.242	26%	198

Lessons Learned

- The detailed surfacing modeling platform allows for educated GI planning, siting and sizing.
- TSS removal objective is the dominant factor on GI footprint
- Water quantity reduction objective is the dominant factor on storage capacity
- Engineered soil media permeability is the limiting factor for fully utilizing the GI storage
- Stone column or standing pipe improves GI storage utilization

