

Beyond Runoff Reduction: Thorough Green Infrastructure Design

> Zach Sample, PE Innovyze

Presenter

Zach Sample, PE

Stormwater Products Manager

Innovyze

Agenda

- Modern stormwater design (HINT: Runoff Reduction)
- Pros, Cons, Effects
- Solutions by focusing on Clear Visualization of design
- Clear Visualization Solution Case Study with xpdrainage

Innovvze[®]

Why and How Runoff Reduction (RR) Started

'Traditional' Stormwater Design...

Don't discharge higher flows than you used to:

- Peak flow based, detain flow in single pond
- Pipe Network sizing based on Rational Method and Manning's Equation
- Attenuate 2-100yr ARI storm runoff events
- Inlet-Gutter Spread calculations

We were still impacting our downstream neighbors!

- Significant stream erosion was occurring
- Quality of water (chemicals and solids) was poor
- Groundwater and ecological habitats disappearing

Innovyze®

What is **RR**... and why it's great!

Runoff Reduction, Water Quality Volume and First Flush capture: 90% of rainfall events are around 1" – retain and infiltrate the **dirtiest** runoff RR = P*Rv*A / 12 WQv = R(P*Cv*(A/12)) FF = P*Aimp/12

Could have picked anything – why Runoff Reduction?

- Simple to perform volume calculation (hand calc)
- Pass/Fail review criteria
- RR conservative enough (Hydromodification studies not necessarily better)
- Wide adoption

So.. Things are perfect right?

RR Shortcomings and Effects

Coarse, • Will it fit on Independent proposed site? facility designs Exceedence level Base level (ponding area Filter layer depth Base level (filter area) Depth above base • Boxes are Cumbersome checked, but to Vet, Review how will system REALLY and Approve behave? 'Designed' • Was what will literally be in systems are pathwriter.wordpress.com the ground not realistic assessed? **Innovyze**[®]

Clear Visualization Solutions: How to get what we *really* want out of **RR**

Remember the goal: healthy, long term stormwater systems

RR and Traditional Design: quick, simple, clear <u>starting point</u> for stormwater design

Clear Visualization Solutions:

- Review realistic 'As Build' systems
- Must lock calculations to plan/profile/treatment train
- Assess full dynamic hydraulics of stormwater system
- Integrate with CAD/GIS

'As-Build' Layout

Calculations Locked to Plan

Case Study

Mater Planned Community – Ashley Francis @ LJA Engineering

West Central Montgomery, TX Total Project: (967 acres) Case study portion of Phase 1: (157 Acres-*BLUE*) Masterplan developed alongside existing golf courses

Purpose:

Develop and improve a residential site with no adverse hydrological impact

Mitigate to pre-developed 25, 100 year rates

Reduce pollutant runoff through distributed Green Infrastructure

Reduce size of detention facility

Assess viability of Green Infrastructure compared to traditional

Methodology:

- Preliminary flow assessment
- Rational Method
- Pipe Sizing estimate
 Existing Runoff Plan
 Typical drainage plan
 LID based plan

Rational Assessment and Pipe Sizing:

Runoff Coefficient (C) and Tc

Developed and 'effective Green' scenarios assessed

C values decreased and Tc values increased between scenarios Pipe Sizing

Based on Rational flows and Mannings Eq.

Reduction in required pipe sizes shown for the 'effective Green' scenario

Pipe sizing:

Method	Rational Method 🗸		Design Level	Level Inverts	~
IDF	IDF - 5 year MontCo 🗸 🗸		Min. Cover Depth (ft)	4.0	
Pipe Size Library	US Default		Min. Slope (ft/ft)	0.002	
Min. Time of Concentration (mins)	5		Min. Velocity (ft/s)	3.0	
Max. Travel Time (mins)	30	1 6			
			ОК	Cancel	Apply

Pipe Full Velocity (ft/s)	Capacity (ft ³ /s)	Flow (ft3/s)
8.02	56.702	48.645
8.39	80.737	59.764
10.27	98.822	58.869
6.57	471.893	49.175

Innovyze®

Existing Runoff Plan:

Based on 'park' landuses

'Deluge' based catchments

CS: ARI: WQe: T	ype III: 3.8 in : Increase F	Rainfall (%): +0
Phase Name	Max Outflow (ft³/s)	
Existing	48.70005	
Existing	120.85302	
Existing	120.85302 rs: Type III: 12.17 in : Inc	rease Rainfall (%): +0
CS: ARI: 100 yea		
CS: ARI: 100 yea	Max Outflow (ft³/s)	

Typical Drainage Plan:

- Rational Sized pipe
 network
- Eastern 'Trunk' system to be attenuated by basin
- Western 'valley' to leave site untreated

Typical Drainage Plan

- Pond: 6.7 acres
- *Two* outfall pipes
- High flow weir

Typical Drainage Plan:

drainage

Innovyze[®]

P <mark>hase Name</mark>	Max Outflow (ft³/s)		
disting	48.70005		
eveloped	35.05776		
'S: ARI: 20 year Phase Name	s: Type III: 9.43 in : Incr Max Outflow (ft³/s)	ease Rainfall (%): +0	
S: ARI: 20 years Phase Name xisting	s: Type III: 9.43 in : Incr Max Outflow (ft³/s) 120.85302	ease Rainfall (%): +0	

155,96832

136.91512

Existing

Developed

Distributed Green Infrastructure Plan:

'lumped' Raingarden for each neighborhood catchment

ame Typical Bioretection						
Dimensions	Filtration Layers	Inlet	s	Outlets	Advanced	Pollutio
Ponding Area		_		Filter Area		
Exceedence Level (ft)	218.0	Freeboard (in)	6.0	Base Level (ft) 213.0		
Depth (ft)	2.0	Length (ft)	353.6	Under Drain		
Base Level (ft)	216.0	Slope (ft/ft)	0.00	Height Above Base (†	t) 0.0	
─ Top Area (ft ²)	13525.6			Diameter (in)	0.0	
Side Slope (ft/ft)	0.50			No. of Barrels	0	
Base Area (ft ²)	10697.1			Manning's n	0.000	
		1				

Distributed Green Infrastructure Plan:

Distributed Green Infrastructure Plan:

Distributed Green Infrastructure Plan:

- 1.2 acres smaller!
- Single outfall pipe
- No Freeboard issues

Distributed Green Infrastructure Plan:

Results

SCS: ARI: WQe: Type III: 3.8 in : Increase Rainfall (%): +0

Phase Name	Max Outflow (ft³/s)
Existing	48.70005
Developed	35.05776
LID	5.66699

SCS: ARI: 20 years: Type III: 9.43 in : Increase Rainfall (%): +0

Phase Name	Max Outflow (ft³/s)
Existing	120.85302
Developed	89.24629
LID	71.23745

SCS: ARI: 100 years: Type III: 12.17 in : Increase Rainfall (%): +0

Phase Name	Max Outflow (ft³/s)
Existing	155.96832
Developed	136.91512
LID	113.77116

What was learned, next steps..

Case study - 'detailed' schematic design process

Refinement of Green scenario

Alternative LID systems possible

Drag/drop drainage and LID elements (time saver)

Automated elevation data (time saver)

One approachable, quick tool replaced workflow using *SIX* other programs to juggle same work

Thanks for joining us

Zach Sample, P.E. Stormwater Products Manager

TELEPHONE: +1 888 554 5022 Zach.sample@innovyze.com

WWW.INNOVYZE.COM

