Conservation Cooperation: Working Together at All Levels to Reduce Nutrient Runoff

Jake Hahn Clermont Soil & Water Conservation District

Hannah Lubbers Clermont County Office of Environmental Quality

> Stormwater Conference May 10, 2019

East Fork Lake

2000 acre water surface 345 mi² of upland drainage

- 64% agriculture
- avg. farm 8 acres
- 1.5 % imperviousness

4 uses

- flood control
- drinking water source
- recreation (State Park, 2 beaches)
- downstream protection (min 30 cfs discharge)

20 MGD DWTP

Cooperative Effort

- Many agencies have combined their efforts to study and make water quality decisions in the EF Watershed.
- This collaborative consists of federal, state, local, and private partners to collect data and implement projects.
- In 2011 this collaborative partnered with Hazen and Sawyer with a grant from USDA to study an innovative BMP.

Goals of Project

Capture Nutrients in an Agricultural Setting

Use a Modified Urban Stormwater Basin to Remove Sediments, Phosphorus, AND **Nitrogen**

Submerged Vegetative Wetland

University of New Hampshire Stormwater Center (UNHSC) Gregg Hall • 35 Colovos Road • Durham, New Hampshire 03824-3534 • http://www.unh.edu/erg/cstev

Project Area

6]

Project Layout

700 Foot Detention

400 Foot SVB

Detention Design

Series Lange | Mail and

have sufficient urface water entry. rs for circular openings are: holes per lineal foot of riser

S

Gravel Around Riser Pipe round @ Riser

Diam.

a minimum of 6' of erforated tubing for subsurface drain tion.

Tile depth minimum 2 feet--1 foot below bottom of waterway*

TYPICAL

Settlement Allowance-

Encase Riser with Rock Rip-Rap 8.50 (ft

3

Orifice

Submerged Vegetative Bed Design

Four Monitoring Stations: 1. Upstream (CWLUS)

136 ACRE DRAINAGE

(19)

Monitoring Removal Efficiency

- Nutrient loading important to assess impact on systems downstream
- Continuous flow data
- Autosamplers triggered by flow
- NH₃, NO₂NO₃, TON, P_{DISS}, TP, SS
- Time paced discrete samples
 - -composites
- Flow paced compositing

- Automatic samplers
- Flowmeters
- Cellular modems
- Solar Panels
- Rain Gauge

Flow Measurement-Channel Sites

Stage (ft)

- Level Sensors
 - Discharge rating curves

- 2015 Installed AVM
 - Stage

Effluent

- Velocity
- Discharge

Results

- Summarized 48 sampling events 12/2014-10/2017
- Time paced (hourly) and flow paced composite samples
- Annual loads extrapolated
 - Event mean concentrations
 - Seasonal means (statistical differences in S/S, W, & F)

What if the SVB was sized appropriately?

- Only treats 18% of flow
- Design storm:
 - 1" rain
 - 1.5 month frequency

		NH_3	NO ₂ NO ₃	TON	TN	P- _{DISS}	ТР
SVB removal	kg/yr/ac	0.09	0.40	0.98	1.46	0.10	0.21
BMP removal	kg/yr/ac	0.02	0.46	1.31	1.97	0.57	0.88
total system	%			1			
removal:	removal	21%	75%	37%	47%	47%	37%

Cost Effectiveness

Draatioo		TN	ТР		
Practice	(\$/	′kg/ac.)	(\$/kg/ac.)		
Cover Crop +	\$	38.02	\$	60.35	
No III AgBMP	Ś	4.32	Ś	10.48	

(29)

In Summary:

- It works!
- Next Steps:
 - Seasonality of nutrient removal
 - Lifespan of practice:
 - 17 (3 SVB) tons of sediment removed per year
 - Phosphorus removal efficiency
 - Structural integrity
 - EQIP practice
 - Transferability? We saved \$ with labor & wetland plant installation.

Thanks!

Federal Partners

• State Partners

• USDA ARS

Local Partners

- Farmers
- Hazen & Sawyer
- Clermont County Water & Sewer

