

An Urban Stream Manager's Guide to Field-Based Master Planning George Remias, PE Manager of Stormwater Inspection & Maintenance

District's RSMP SWSA

Chardon

Regional Stormwater Management Program (RSMP) Introduction: RSS Asset Counts

The RSMP is responsible for inspecting and maintaining the Regional Stormwater System (RSS), which is defined as:

- Approximately 300-acres of Drainage
- Intercommunity-related Problems

Regional Sewer District

The RSS currently includes:

- 350 Miles of Open Stream
- 84 Miles of Culverted Stream Pipes
- 1,088 Roadway Crossings
- 22 Major Structures
- 91 Basins
- 25 Debris Racks
- 4,500+ BTUs (3,600+ buildings, 700+ transportation, and 250+ utility assets)

SWIM Vision

Safe conveyance of stormwater along healthy streams

SWIM Mission

Validated Predictive, Preventative, and Proactive SWIM Activities & Recommendations

by following a

Field-Focused, Function, & Risk-Based Stormwater Master Planning Approach to Asset Management

Safe Conveyance of Stormwater Along Healthy Streams Stormwater Inspection: Condition Scores

SWIM Standard for Assigning Condition Ratings

Condition Rating	Sediment & Debris Accumulation (Crossings)	Sediment & Debris Accumulation (Basins)	Structural Integrity (Crossings)	Structural Integrity (Streams)	Hydraulic Performance (Crossings)
	[% Blocked]	[% Active Storage Lost]	[ODOT Culvert Rating]	[BEHI/NBS]	[Peak Water Level]
1	0 - 10%	<=5%	8 or 9	Low/Low	<50% flow area
2	10 - 25%	<=10%	6 or 7	Moderate/Low	>50% flow area
3	25 - 50%	<=20%	5	High/Moderate	Surcharged
4	50 – 75%	<=30%	3 or 4	High/High	Road Overtopped
5	>75 %	>30%	0, 1, or 2	Very High/ Very High	Road Impassable (D > 9-inches)

Stormwater Inspection

Building, Transportation, Utility (BTU)
 EX: Assigning Structural Condition Rating (1-5) to a BTU along a stream:

Condition Score #1: Assign BEHI/NBS condition rating to stream

Condition Score #2: Infrastructure slope = Top of bank distance to infrastructure/bank height, where: >[1 > 5:1; 3 > 2:1 but <= 3:1; 5<=1:1]</p>

Worst condition score assigned to BTU

Rated '5' for risk of failure

Be sure to inspect and maintain your assets?

Problem Assets: How Often to Inspect? What are the Maintenance Triggers?

When and Where to Inspect after a Storm Event? Can we perform maintenance that prevents flooding?

Where can we prevent an asset from failing? When should we monitor, repair, or replace an asset?

USMH: LID2292 DSMH: LID2534 UPSTREAM

Buckling Inverse Curvature

417.8 ft.

Inspection Maintenance Action Plan

Goals:

Primary Sources:

Assist Urban Stream Managers with better understanding their stormwater system for a range of stormwater related categories

Provide information to support and optimize decision-making when planning field activities

Northeast Ohio Regional Sewer District

✓ SWMP Field-Based Assessments ✓ SWMP H/H models ✓ Desktop GIS ✓ Typical Useful Life of Engineered **Materials** ✓ Typical Repair & Replacement Costs ✓ Historical Inspection and **Maintenance Activities**

Field-Based Master Planning Topics to Consider

Overall Condition Assessment
 Recommended
 Sediment & Debris Accumulation
 "Is it clogged?"
 Recommended
 Inspection Plan
 Dry Weather:

Structural Integrity "Is it broken?"

> Hydraulic Performance

"Is it flooded?"
 Northeast Ohio
 Regional Sewer District

 Recommended Inspection Plan
 Dry Weather:

 Sediment & Debris Inspections
 Structural inspections

Urgent Storm Response:

- Normal: 1 to 10-year storm
- Expanded: 25 to 50-year storm

Significant: >= 100-year storm*
 *Where don't you field visit?

 Field-Based Master Planning Topics to Consider cont.
 Recommended Maintenance Recommended Plan: Monitoring Plan:

Maintenance Triggers:

- Where sediment/debris blockage may lead to flooding (e.g., Building, Road)
- Where basin active storage loss may lead to increased emergency spillway activation

Northeast Ohio Regional Sewer District Flood Stage Monitoring

 Locations (e.g., high risk)
 Types (e.g., visual, stream gauge)
 Metrics for Notification (e.g., flood stages

Additional Monitoring
 Problems (e.g., structural)
 Projects (e.g., time lapse)
 Maintenance (e.g., sediment, cebris)

Field-Based Master Planning Topics to Consider cont.

(FMEA)

Life-cycle Cost Analysis
 Inspection
 Routine Maintenance
 Repair
 Replacement

Listing and Analyzing Problems Determining Root Causes and their Sources Developing and Ranking **Corrective Actions** ➢ Prioritizing Next Steps ➢ Tracking Progress

Gillere Mode Effects Analysis

Field-Based Master Planning Topics to Consider

Overall Condition Assessment Recommended Sediment & Debris Accumulation "Is it clogged?"

Structural Integrity "Is it broken?"

>Hydraulic Performance "Is it flooded?"

Northeast Ohio egional Sewer District

Inspection Plan >Dry Weather: • Sed & Debris Inspections

• Structural inspections

Urgent Storm Response:

- Normal: 1 to 10-year storm
- Expanded: 25 to 50-year storm
- Significant: >= 100-year storm* *Where don't you field visit? @neorsd

Asset Class Type	Overall Grade	Average Structural Condition	Assets Inspected
Crossings	B-	2.3	1,005
Culverted Streams	B-	2.5	92
Basins	B-	2.4	83
Major Structure	С	2.9	12
Streams	B-	2.3	820
Total	B-	2.4	2,012

- 70% of RSS assigned Condition Scores
- 381 RSS assets with
- D or F structural grade

Regional Sewer District

May 2019 SWSA State of the Infrastructure Structural Grade: B-

Assigning Inspection Frequency by Structural Integrity Condition

Inspection Frequencies for Crossings

Conduit	Average Inspection Frequency (Years)					
Structural Condition Score	Corrugated Metal Pipe	Concrete Pipe	Other Materials			
1	5	10	10			
2	4	5	5			
3	2	2	2			
4	1	1	1			
5	1	1	1			

Conduit Structural	Average Inspection Frequency (Years)						
Condition Score	Corrugated Metal Pipe	Concrete Pipe	Other Materials				
Routine PACP Inspections of All Conduits							
All	5	5	5				
Additional Targeted Inspections							
1	5	5	5				
2 4		5	5				
3 2		2	2				
4 1		1	1				
5 1		1	1				

Inspection Frequencies for Culverted Streams

Average Inspection Frequencies for Streams

Lateral/Vertical Stability Condition Score		h Inspection cy (Years)	BTU Site Inspection Frequency (Years)		
Jeore	High	Low			
1	5	10	10		
2	5	10	5		
3	3	5	2		
4	3	5	1		
5	3	5	0.5		

Average Inspection Frequencies for Basins

Structural Condition Score	Inspection Frequency (Years)
1	5
2	5
3	2
4	1
5	0.5

Overall Condition Assessment Example: Structural Integrity									
Summary of Recommended Annual Inspection Requirements for									
	Cuyahoga River So	uth Watershed							
	Average A	Annual Inspection Requ	irements						
Type of Inspection	Type of Inspection Crew-Hours Staff-Hours Burdened Labor Cost								
Chronic Sediment and Debris Ac	cumulation								
- Basins	16.8	33.6	\$1,848						
Structural Integrity Inspections									
· Crossings	374.9	749.7	\$41,234						
Culverted Streams	271.0	541.9	\$29,807						
Stream Reaches	319.5	639.1	\$35,150						
• BTUs Threatened by									
Erosion	514.2	1,028.4	\$56,562						
Total 1,496.4 2,992.7 \$164,601									

Assigning Structural Condition scores to BTUs

- Condition Rating #1: stream lateral erosion following BEHI/NBS approach
- 2. Condition Rating # 2: Measure infrastructure slope (TOB distance to infrastructure/Bank Height)
- 3. Assign highest condition rating to BTU

Asset #: BLoo148_Boo7 Strongsville 19892 Royalton Road Structural BRE= 24 Structural Grade = D BTU: Residence Inspection Frequency: Annual

Estimating Bank Erosion Rates along Stream Reaches: "Cheesy Poof" Method CLE Airport Debris Rack

Following the BEHI/NBS "cheesy poof" method, high percentage of the Abram Creek sediment load is estimated to be generated between the CLE debris rack and SR 237

The same stream reach is the primary source of LWD at the CLE debris rack and sediment at the outlet structure

Currently exploring how best to prioritize streambank stabilization projects service-area wide:

- 1) Mitigate Risk (Public Safety/Public Health)
- 2) Reduce maintenance frequency/cost
- 3) Improve stream function

Field-Based Master Planning Topics to Consider

- Overall Condition
 Assessment
 Sediment & Debris Accumulation
 - "Is it clogged?"
- Structural Integrity
 "Is it broken?"
- Hydraulic Performance"Is it flooded?"

Recommended Inspection Plan

- >Dry Weather:
 - Sed & Debris Inspections
 - Structural inspections
- Urgent Storm Response:
 - Normal: 1 to 10-year storm
 - Expanded: 25 to 50-year storm
 - Significant: >= 100-year storm* *Where don't you field visit?

Consider Stream Function when Assessing Hydraulic Performance Model culverts with sediment buildup under baseline conditions where stream function is stable

Consider Stream Function when Improving Hydraulic Performance Evaluate increasing capacity within the floodplain (not stream channel)

BK00191 Alternative 1

BK00191 Alternative 2

Field-Based Master Planning Topics to Consider

Overall Condition Assessment
 Sediment & Debris Accumulation
 "Is it clogged?"

Structural Integrity

"Is it broken?"

> Hydraulic Performance

"Is it flooded?"

Northeast Ohio Regional Sewer District Recommended Inspection Plan
 Dry Weather:

 Sed & Debris Inspections
 Structural inspections

Urgent Storm Response:
Normal: 1 to 10-year storm
Expanded: 25 to 50-year storm
Significant: >= 100-year storm*
*Where don't you field visit?

@neorsd

Field-Based Master Planning Topics to Consider cont.

Recommended Maintenance Plan:

Maintenance Triggers:

- Where sediment/debris blockage may lead to flooding (e.g., Building, Road)
- Where basin active storage loss may lead to increased emergency spillway activation

Recommended Monitoring Plan:

Flood Stage Monitoring

- Locations (e.g., high risk)
- Types (e.g., visual, stream gauge)
- Metrics for Notification (e.g., flood stages

> Additional Monitoring

- Problems (e.g., structural)
- Projects (e.g., time lapse)
- Maintenance (e.g., sediment, Debris)

Maintenance Triggers: Sediment and Debris Blockage

Goal:

Identify what assets the standard debris blockage protocol should be adjusted to mitigate flooding

Methodology:

Applied a "Stress Test" by reducing the flow area for each culvert to understand at what percent blockage does flooding begin for each design storm

Calculations based upon the orifice equation by defining: - H/H modeled peak flow (Qp) by Design Storm -Depth when flooding first occurs -Adjusting the culvert flow area until Qp was achieved for the flooding depth

	First BTU Flooded		Design Storm						
RSS	BTU	BTU	1-	2-	5-	10-	25-	50-	100-
Asset ID	Туре	Asset ID	year	year	year	year	year	year	year
CC00069_001	Local_Road	СС00069_Т001	47%	30%	4%	-53%	-113%	-162%	-217%
CC00071_001	Local_Road	CC00071_T001	81%	72%	60%	46%	26%	10%	-9%
CC00077_001	Local_Road	CC00077_T001	86%	78%	66%	56%	48%	42%	38%
CC00087_001	Driveway	CC00087_T001	66%	52%	24%	2%	-31%	-59%	-86%
CC00089_001	Local_Road	СС00089_Т001	86%	79%	66%	56%	42%	29%	15%
CC00091_001	Local_Road	CC00091_T001	90%	85%	77%	70%	65%	62%	58%
CC00109_001	Local_Road	СС00109_Т001	80%	67%	48%	36%	22%	15%	8%
CC00111_001	Arterial_Road	CC00111_T001	79%	65%	45%	33%	19%	11%	4%
CC00123_001	Local_Road	CC00123_T001	89%	85%	75%	66%	51%	30%	12%
CC00127_001	Local_Road	CC00127_T001	83%	77%	64%	51%	29%	-1%	-27%
CC00135_001	Local_Road	СС00135_Т001	91%	82%	68%	49%	27%	4%	-24%
CC00137_001	Local_Road	CC00137_T001	81%	73%	55%	31%	-3%	-42%	-75%
CC00155_001	Local_Road	CC00155_T001	59%	44%	36%	25%	-12%	-64%	-113%
CC00161_010M	Local_Road	CC00161_T001	68%	50%	30%	25%	23%	20%	21%
CC00169_001	Local_Road	СС00169_Т001	69%	62%	51%	41%	24%	9%	-8%
CC00171_001	Non_Res. Road	CC00171_T001	24%	-5%	-52%	-93%	-143%	-181%	-213%
CC00173_001	Local_Road	CC00173_T001	53%	35%	9%	-16%	-46%	-69%	-88%
CC00175_001	Driveway	CC00175_T001	78%	68%	53%	38%	15%	-12%	-47%
 CC00179_001	Non_Res. Road	 CC00179_T001	81%	70%	65%	51%	33%	15%	-5%
CC00081_001	Highway	СС00081_Т001	60%	38%	3%	-24%	-52%	-70%	-82%
CC00093_001	Highway	CC00093_T001	66%	49%	19%	-6%	-23%	-37%	-50%

Applied a "Stress Test" by reducing the flow area for each culvert to understand at percent blockage does flooding begin for each design storm.

Calculated based upon the orifice equation by defining: -Depth to flooding -Culvert flow area -H/H modeled peak flow

Used to Identify when standard debris blockage protocol should be adjusted at an asset to mitigate flooding

Understanding Where LWD collects and Why Consider Culvert Width compared to Stream Channel Width

7-ft Circular Culvert

CC00175

6x12-ft Box Culvert No LWD projects

CC00173

3 ts ths

CC00171

8x12-ft Box Culvert No LWD projects

CC00169

Pre-Construction

Post-Construction
Field-Based Master Planning Topics to Consider cont.

Recommended Maintenance Plan:

> Maintenance Triggers:

- Where sediment/debris blockage may lead to flooding (e.g., Building, Road))
- Where basin active storage loss may lead to increased emergency spillway activation

Recommended Monitoring Plan:

- Flood Stage Monitoring
 Locations (e.g., high risk)
 - Types (e.g., visual, stream gauge)
 - Metrics for Notification (e.g., flood stages

Additional Monitoring Problems (e.g., structural) Projects (e.g., time lapse) Maintenance (e.g., sediment, Debris)

Maintenance Triggers: Sediment Accumulation at Basins

Goal:

Identify what basins the standard sediment accumulation protocol should be adjusted to mitigate adverse impacts (e.g., downstream flooding)

Methodology:

Applied a "Stress Test" by reducing the active storage volume for each basin to estimate what percent volume loss does the emergency spillway activate by design storm.

Percentage calculated using H/H modeling

Assumed active storage volume lost from the basin invert

Maintenance Triggers: Sediment Accumulation in Basins When Lost Active Storage Leads to Emergency Spillway Activation

Basin Asset ID	Total Active Storage	Current Active	Percent Active	Active Storage Volume Loss to Activate Emergency Spillway During Design Storm					
	Volume	Storage Volume	Storage Lost	10-year	25-year	50-year	100-year		
	CY	CY	%						
BR00182	30,160	27,804	8%	10%	-27%	-50%	-73%		
BR00341	67,557	65,806	3%	-18%	-30%	-38%	-46%		
BR00230	41,514	40,853	2%	28%	17%	11%	3%		
BR00384	134,582	133,309	1%	65%	50%	40%	29%		
BR00282	34,604	34,327	1%	37%	10%	-3%	-9%		
BR00284	97,929	97,284	1%	63%	59%	46%	33%		
BR00146	83,407	82,313	1%	2%	-7%	-11%	-15%		
BR00149	41,579	38,722	7%	21%	0%	-6%	-9%		
BR00210	335,177	328,861	2%	56%	47%	38%	25%		
BR00212	47,062	41,920	11%	52%	43%	35%	24%		

Field-Based Master Planning Topics to Consider cont.

Recommended Maintenance Plan: Recommended Monitoring

Maintenance Triggers:

- Where sediment/debris blockage may lead to flooding (e.g., Building, Road))
- Where basin active storage loss may lead to increased emergency spillway activation

Flood Stage Monitoring

- Locations (e.g., high risk)
- Types (e.g., visual, stream gauge)
- Metrics for Notification (e.g., flood stages

> Additional Monitoring

- Problems (e.g., Structural)
- Projects (e.g., Time Lapse)
- Maintenance (e.g., Sediment, Debris)

Flood Stage Monitoring Recommendations

Monitoring Methods:

- Visual
 - Site Visits
 - Trail Cam
- Stream Gauge
 - Four NWS Flood Stages
 - Notifications
- Rain Gauge/GARR
 - Area Density
 - Notification for storms of interest

NWS Flood Stages:

- Action Potential Significant Hydrologic Activity
- Minor Flooding Inundation of Roads
- Moderate Flooding Inundation of structures and roads near streams
- Major Flooding Extensive inundation of structures and roads

SWMP Flood Stage Criteria

Table 12-34 Definition of Flood Conditions Triggering each Flood Response Action Level

	Critia		Preparation Begins	Minor Flooding Begins		Мо	derate Flooding Begins	Major Flooding Begins ¹		
BTU Asset	Criti- cality	Condi- tion	Action Level	Condi- tion	Action Level	Condi- tion	Action Level	Condi- tion	Action Level	
Hospital/School	9	1	3-ft below ground elevation at foundation	2	1-ft below ground elevation at foundation	3	Ground elevation at foundation	4	First floor elevation	
Insured/Occupied Non-Residential	8	1	3-ft below ground elevation at foundation	2	1-ft below ground elevation at foundation	3	Ground elevation at foundation	4	First floor elevation	
Insured/Occupied Residence	6	2	1-ft below ground elevation at foundation	3	Ground elevation at foundation	4	First floor elevation	4	First floor elevation of 5 or more residences	
Highway/Railroad	9	1	8 ft below road overtopping depth	2	5 ft below road overtopping depth	3	1 ft below overtopping depth		Inundation begins	
Arterial Road	8	2	5 ft below road overtopping depth	3	1 ft below overtopping depth	4	Overtopping depth	5	Overtopped and impassible (>9 inches)	
Local Road	6	3	1 ft below overtopping depth	4	Overtopping depth	5	9-inches above overtop- ping depth (impassible)	5+	3 or more roads impassible	
Parking Lot, Drive, Walk, Trail	4/5	3	1 ft below overtopping depth	4	Overtopping depth	5	9-inches above overtopping depth	5+	9-inches above entire parking lot	
Basins w Class I/II Dam	9	2	5 ft below dam crest/ overtopping elevation	3	3 ft below dam crest/ overtopping elevation	3+	Emergency spillway activation elevation	4	Dam crest/overtopping elevation	
Basin w/ Class III Dam	6	2	5 ft below dam crest/ overtopping elevation	3	3 ft below dam crest/ overtopping elevation	3+	Emergency spillway activation elevation	4	Dam crest/overtopping elevation	

¹ No major flooding level will be defined if the reported BTUs flooding for the Project Area does not reach any of the indicated thresholds.

Proposed Flood Stage Monitoring Plan by Project Area

Project		Monitoring Location		Monitoring		·	St	Storm Response Stages (ft msl)				
Area ID	Asset ID	D	escription	Method		tionale	Act.	Min.	Mod.	Maj.		
Brandywine C	reek <u>Subwatershe</u>											
ICPA01	IC00296	USGS	Gage 04206413	Recording Stage	Measures su	owatershed flows	968.6	969.6	970.3	976.0		
ICPA02	IC00087	Led	Table 12	-12 Recon	mende	d Flood	2	1008.2	1008.9	1010.1		
BRPA01, BRPA03	BR00103	USG		onitoring			!	963.2	963.5	969.3		
BRPA05	BR00411	Inlet t	-	a River So	D	1077.0	1077.8	N/A				
BRPA07	BR00181	Crossir					j	990.5	993.5	993.5		
BRPA08	BR00358	La	Turne			Number	ł	1000.4	1000.6	1005.0		
BRPA09	BR00215	Ingle	туре	of Monitor	ing	of Sites	9	1005.9	1008.3	N/A		
BRPA10	BR00217	Atter		Visual		38	9	1019.9	1019.9	N/A		
BRPA11	BR00234	Brandy		VISUUI		50	9	1037.9	1038.6	N/A		
BRPA12	BR00251	Gort		Trail Cam		8	D	1079.0	1080.4	N/A		
BRPA13	BR00261	Owen	Decere	ling Stage M	otor	6	- 1	1043.1	1043.2	1049.4		
BRPA14	BR00283	Upper	Record	ling Stage M	eter	6	5	1075.5	1076.3	1079.5		
BRPA15	CULVERTLINE-61 (Local)	Behind				~	D	1045.0	1045.0	1048.0		
BRPA16	BR00409	Raver	nna St Crossing	Visual	Roadway and	building flooding	1080.6	1081.6	1082.3	N/A		
BRPA17	STORM-3482	E. Stre	eetsboro Street	Visual	1063.5	1064.5	1065.3	1067.8				
BRPA18	BR00239	Valley Vi	iew Road crossing	Visual	Upstrea	am flooding	1045	1046	1046	N/A		

Using Trail Cams to Support the RSMP

The SWIM group currently maintains 22 trail cameras throughout the SWSA

Primary Goals:

- Better understand RSS storm event response (Flooding)
- Help identify and support Maintenance & Construction projects
- > Improve response time
- Improve effective site inspections

Preventative Maintenance Example 4/9/17: 1.62-inch Rain Event

4/19/17: Peak of storm at 8:15 pm

4/20/17: LWD nearly 100% blocking debris rack post storm; Generated 80 CY of LWD

Preventative Maintenance Example cont. 5/18/17: 1.52-inch Rain Event

Basin was cleaned prior to an equivalent storm event, which prevented the emergency spillway from activating

April 14, 2018: Debris rack is clear prior to storm event

Trail Cam Example: CLE Airport Debris Rack

April 16 2018 storm (2.91-inches) generated 48 CY of LWD April 16: Peak storm and debris accumulated on debris rack

April 17: Maintenance performed next day to remove 48 CY LWD

Used a trail camera to identify and quantify maintenance projects without a field visit

Debris rack is clear post April 17 maintenance project

Field-Based Master Planning Topics to Consider cont.

Life-cycle Cost Analysis
 Inspection
 Routine Maintenance
 Repair
 Replacement

ortheast Ohio egional Sewer District

Failure Mode Effects Analysis (FMEA) Listing and Analyzing Problems Determining Root Causes and their Sources Developing and Ranking **Corrective Actions** Prioritizing Next Steps ➢ Tracking Progress

Table 12-31 Cuyahoga River South Watershed – District Stormwater Service Area Replacement/Renewal Requirements for RSS Crossings and Culverted Streams

Asset ID	Material	Useful Life (Years)	Conditio Score		Length (Feet)	Replacement Cost (\$M)	Depreciating Value (\$M)
HA00291_001	Concrete	100	2	60	80	\$600,000	\$9,479
HA00295_001	Concrete	100	2	60	49	\$220,500	\$3,483
HA00295_002	Concrete	100	2	60	49	\$220,500	\$3,483
HA00299_001	Concrete	100	2	60	140	\$1,050,000	\$16,588
HA00307A_001	Concrete	100	2	60	140	\$1,050,000	\$16,588
HA00307A_005	Concrete	100	2	60	140	\$1,050,000	\$16,588
BA00004	Corrugated Metal	30	4	6	15	\$67,500	\$11,074
BA00004	Corrugated_Metal	30	4	6	15	\$67,500	\$11,074
BA00015	Concrete	100	5	0	53	\$238,500	\$238,500
BA00147B	Concrete	100	1	80	208	\$934,888	\$11,686
BA00153A	Masonry	100	1	80	315	\$2,364,824	\$29,560
BA00155	Concrete	100	3	40	572	\$4,289,422	\$107,236
TS00004	Concrete	100	4	20	355	\$1,597,500	\$79,875
TS00101	Concrete	100	4	20	927	\$4,172,640	\$208,632
TU00011A	Concrete	100	5	0	336	\$1,512,000	\$1,512,000
WD00068	Corrugated Metal	30	4	6	1,784	\$8,027,966	\$1,317,088
Yellow Creek North	Fork						
NF00037A_001	Concrete	100	1	80	36	\$540,000	\$6,398
NF00039_001	Corrugated Metal	30	1	24	424	\$3,180,000	\$125,592
NF00049_001	Concrete	100	2	60	33	\$247,500	\$3,910
Total	302	Conduits	2	66 Parents	35,819	\$208,161,260	\$42,040,544
Notes:							

Methodology:

1. Assign Useful Life by Material

2. Define Remaining Useful life by Material and Structural Condition Score

3. Estimate **Replacement Cost by Pipe Dimensions/LF**

1. All assets listed are conduits associated with crossings, except rows highlighted yellow, which represent culverted streams.

2. Unit per-length replacement costs based on CRS SWMP conduit replacement project costs, including associated costs (e.g. end structures). Four cost categories based on equivalent conduit diameter (i.e., square root of height * width): \$700 per foot (equivalent diameter up to 2-foot); \$4,500 per foot (equivalent diameter between 2-foot and 8-foot); \$7,500 per foot (equivalent diameter between 8-foot and 15-foot); and \$45,400 per foot (equivalent diameter larger than 17-foot).

3. No replacement costs provided if cross-section data missing in asset record, used to define unit cost

Depreciating value of asset is present worth if replaced in year action needed.

Budgeting for Asset Replacement by Condition Score

Table 12-32 Replacement/Renewal Period and Costs for RSS Assets in Cuyahoga River South Watershed

	Corrugated Metal Pipe				Concrete	Pipes	Other Pipe Materials		
Condition Score	Action Needed (years)	Length (Miles)	Replacement Cost (\$M)	Action Needed (years)	Length (Miles)	Replacement Cost (\$M)	Action Needed (years)	Length (Miles)	Replacement Cost (\$M)
5	Now	4,465	\$21.2	Now	2,132	\$13.0	Now	45	\$0.3
4	0-6	4,432	\$20.7	0-20	1,738	\$8.4	0-20	434	\$2.4
3	6-12	1,777	\$11.0	20-40	2,989	\$23.1	20-40	243	\$1.5
2	12-18	1,980	\$9.6	40-60	11,207	\$70.4	40-60	1,092	\$7.5
1	18-24	934	\$5.5	60-80	594	\$4.5	60-80	473	\$3.1
0	30	1,215	\$5.5	100	8	\$0.0	60-80	61	\$0.5
Total		14,803	\$73.5		18,668	\$119.5		2,348	\$15.2

Note: Replacement cost represents the complete replacement of the conduit with a concrete pipe, and all associated costs for end structures, pavement replacement, etc. The unit replacement cost represents an average of the total project costs for crossing/culverted stream replacement from the CRS SWMP baseline solutions and system enhancements, in 2018 dollars.

Next Steps

Under Development:

General Assessments: Asset Class Type, Community, Subwatershed, Drainage Area, Impervious Area, Slope

Predictive Analytics: Correlating Watershed Characteristics and Meteorological Data to Field Observations

Failure Mode Effects Analysis (FMEA): Mitigating Problems costeffectively (Understanding problems, root causes and their sources, then developing cost-effective solutions) Northeast Ohio Regional Sewer District

Applying Predictive Analytics to Estimate LWD Example: CLE Debris Rack

LWD v Stream Depth (1/16 - 4/19)

We Happy?

Pulp Fiction, 1994

Yeah, We Happy

Northeast Ohio Regional Sewer District

George Remias, PE

Manager of Stormwater Inspections & Maintenance

Environmental Maintenance Services Center 4747 E. 49th Street, Cuyahoga Hts., OH 44125 p: 216.641.6000 x2313 c: 216.701.7298 remiasg@neorsd.org

