

2019 Ohio Stormwater Conference Sharonville, OH – May 10th, 2019

Sharon Creek Tributary – Two Birds with One Stone

Funding Flood Mitigation and Infrastructure Repair with FEMA Grants

David Hayson, PE, SI

Senior Project Engineer

BS Civil Engineering – University of Dayton Land Surveying Certificate – Cincinnati State

Cincinnati - Water Resources Group

- Hydrologic and Hydraulic Assessment
 - Planning and Site/Civil Design
 - Modeling
 - Benefit-Cost Analyses

Agenda

- 1. Safety Moment
- 2. Project Location / Background
- 3. Hydrologic Analysis
- 4. Hydraulic Analysis
- 5. Alternative Analysis
- 6. Grant Application
- 7. Path Forward

Safety Moment

Don't Play, Swim, or Drive through Flooding Rivers

Watershed / Client Project Location / Background

2018 WMAO Conference

You Are Here!

Project Location Mill Creek Watershed

~169 sq. miles

Project Location

Mill Creek Watershed

~169 sq. miles

Project Location

Sharon Creek Watershed

~10 sq. miles

Project Location

~3.4 sq. miles

Project Client City of Sharonville Population 13,560

Why are we studying the watershed? Project Background

Project Background

> Effective Regulatory Floodplain

Local

Where Does the Water Come From?

Project Background

Watershed = \sim 3.4 mi.²

Where Does the Water Come From?

Project Background

Watershed = \sim 3.4 mi.²

Phased Scope of Work Hydrologic Analysis

Hydrologic Analysis Sub-Divide Watershed

Develop Stage-Storage Areas

Determine Hydrologic Soil Groups

Hydrologic Soil Group

В

Hydrologic Analysis

Determine Land Cover

Determine Composite CNs

Compare HEC-HMS to Effective Flow Rates

Hydrologic Analysis

			Peak Discharges (cubic feet per second)			
Model	Location	Drainage Area (square miles)	10% Annual Chance Exceedance	2% Annual Chance Exceedance	1% Annual Chance Exceedance	0.2% Annual Chance Exceedance
Effective FIS	Above Thornview Drive	0.63	1,380	2,100	2,590	4,050
HEC-HMS	Above Thornview Drive	0.55	381	547	622	802
Effective FIS	Above Main Street	3.05	1,700	2,110	2,590	4,050
HEC-HMS	Above Reading Road	3.30	979	1,584	1,946	2,768
Effective FIS	At Mouth	3.55	1,700	2,110	2,590	4,050
HEC-HMS	At Mouth	3.40	1,094	1,598	1,963	2,795

Compare HEC-HMS to Effective Flow Rates

Hydrologic Analysis

Phased Scope of Work Hydraulic Analysis

Hydraulic Analysis

Topographic Survey

- Field Photos (Approximate Location)
- Survey Points

Structure Drawings

Hydraulic Analysis

HEC-RAS Schematic

Hydraulic Analysis

Hydra Analys

Modeled Roughness Values

		Land Use	Manning's "n" Value
Hvdra	aulic	Channel	0.035 - 0.050
\poly		Impervious Surface	0.015
Analy	/515	Residential / Short Grass	0.030
		Railroad	0.035
		Brush	0.060
Land	Use	Trees	0.080
	Brush		
	Channel / R		
	Grass	E SHARON ED	TIMEA DB
	Impervious		
	Trees		
	g mana and The same		
	and the second second		AUNDAN BE
	ŧ		S Alcourse 157
			FORINEYIN
			Balland

Compared HEC-RAS Profile to Effective Profile

Hydraulic Analysis

Compared HEC-RAS and Effective Floodplain Extents

Hydraulic Analysis

Compared HEC-RAS and Effective Floodplain Extents

Hydraulic Analysis

Phased Scope of Work Alternative Analysis

Alternatives Considered

Options to reduce risk of flooding downtown Sharonville

Modifications to Increase Storage Capacity

- Existing Structure Provides
 Minimal Storage
- Several Options Available

Alternatives Considered

Options to reduce risk of flooding downtown Sharonville

Increased Capacity through Culvert under Main Street

- Existing Bottleneck
- ODOT Scheduled Repairs

Alternative Analysis

Labyrinth Spillway Modification

Alternative Analysis

Labyrinth Spillway Modification

Alternative Analysis

			Peak Discharges (cubic feet per second)			
Model	Location	Drainage Area (square miles)	10% Annual Chance Exceedance	2% Annual Chance Exceedance	1% Annual Chance Exceedance	
Existing Conditions	Above Main Street	3.30	979	1,584	1,946	
Labyrinth Weir	Above Reading Road	3.30	979	1,338	1,783	
Existing Conditions	At Mouth	3.40	1,094	1,598	1,963	
Labyrinth Weir	At Mouth	3.40	1,094	1,512	1,802	

Existing Twin Box Culverts

Bridge / Open Channel Concept

Alternative Analysis Alternative Analysis

Alternative Analysis Mapping

Alternative Analysis Mapping

Alternative Analysis

Alternative Analysis Costs

	Cost (2017 \$)
Main Street Bridge Subtotal	\$1,840,000
Labyrinth Weir Subtotal	\$358,000
Total for Construction	\$2,198,000
Engineering Design	\$220,000
Permitting, Administration and	\$154,000
Management	
Total for Construction & Engineering	\$2,572,000
Annual O&M Cost	\$500
Design Life (Years)	50
Total Maintenance Costs (NPV)	\$6,900
Total Life Cycle Cost	\$2,579,000

Alternative Analysis

Phased Scope of Work Grant Application

FEMA administers three programs that provide funding for eligible mitigation planning and projects that reduces disaster losses and protect life and property from future disaster damages

- Hazard Mitigation Grant Program (HMGP)
- Flood Mitigation Assistance (FMA) Program
- Pre-Disaster Mitigation (PDM) Program

HMGP

- Authorized under Section 404 of the Robert T. Stafford Disaster Relief and Emergency Assistance Act
- Purpose of HMGP is to help communities implement hazard mitigation measures following a Presidential Major Disaster Declaration in the areas requested by the Governor or Tribal Executive
- HMGP funding is limited; therefore, recipients and local government officials must make difficult decisions as to the most effective use of grant funds

FMA Program

- Authorized by Section 1366 of the National Flood Insurance Act of 1968
- Goal of reducing or eliminating claims under the National Flood Insurance Program (NFIP)
- Provides funding for projects and planning that reduces or eliminates long-term risk of flood damage to structures insured under the NFIP
- Funding is appropriated by Congress annually
- Hazard Mitigation Plans are a condition for assistance

PDM Program

- Authorized by Section 203 of the Robert T. Stafford Disaster Relief and Emergency Assistance Act
- Designed to assist in implementing a sustained predisaster natural hazard mitigation program
- Goal is to reduce overall risk to the population and structures from future hazard events, while also reducing reliance on Federal funding in future disasters
- Funding is appropriated by Congress annually
- Hazard Mitigation Plans are a condition for assistance

FMA Eligible Activities

- Infrastructure protective measures
- Localized flood control to protect critical facilities
- Floodwater storage and diversion
- Floodplain and stream restoration
- Water and sanitary sewer system protective measures
- Utility protective measures
- Stormwater management
- Aquifer storage and recovery
- Wetland restoration/creation

Benefits of Grant Programs

- Supports risk reduction activities
- Improves resiliency
- Eliminates the impact of future events
- Provides a long-term solution to a problem
- Offers a cost-effective solution
 - To be funded, a project's potential savings must be more than the cost of implementing the project.
- Helps avoid repetitive damage from disasters

Benefit-to-Cost Analysis

Grant Application

~60 Structures

First Floor Elevations

Auditor's Data

FEMA BCA Toolkit

Grant Application

~60 Structures

First Floor Elevations

Auditor's Data

Grant Application

~60 Structures

First Floor Elevations

Auditor's Data

FEMA BCA Toolkit

Figure 2: Example depth-damage relationship: USACE, <u>Economic Guidance Memo #04-01</u>, October 2003

Depth-Damage Curve One Story Residential w/ Basement

Grant Application

AADT Data

Reading Rd. / Main St.

Detour Time / Distance

Benefit-to-Cost Analysis – Transportation Damages

Grant Application

AADT Data

Reading Rd. / Main St.

Detour Time / Distance

Grant Application

Open Green Space

Riparian Areas

Benefit-to-Cost Analysis – Environmental Benefits

Grant Application

Benefit-to-Cost Analysis

- Reduction in property and contents damages to 60 commercial and residential structures
- Reduction in displacement and disruption costs for residents and commercial businesses
- Reduction in service loss for public roadways
- Social benefits
- Environmental improvements to the creek and riparian area

Benefit-to-Cost Analysis

Total Life Cycle Cost	\$ 2,578,988
Total Structural Benefits	\$ 1,948,461
Base Structural BCR	0.76

al Benefits \$ 1,	Total Social Be
al Benefits \$	Total Environmental Be
le Benefits \$ 3,	Total Life Cycle Be
Final BCR	Final

Grant Application

Grant Application

Up to 75% of the cost through PDM / FMA Grant (\$1.93 MM)

Cost Share

• ODOT agreed to provide local match if certain conditions met (\$645 k)

Grant Application

Grant Application Submitted to OEMA – 9/29/2017 State Hazard Mitigation Team Voted in Favor – 10/16/2017 Grant Application Submitted to FEMA – 10/27/2017 FMA Grant Application Identified for Further Review – 3/22/2018

Applicant 🔶	Subapplication Title 🔶	Submitted Federal Share 🔶	Status 🔶	R
ОН	City of Sharonville Flood Mitigation Project - FMA	\$1,927,027.02	Identified for Further Review	Ĭ

Grant Application – Next Steps

RFI #1 from FEMA – 4/9/2018 RFI #2 from FEMA – 6/27/2018 RFI #3 from FEMA – 8/20/2018

- FEMA will go through Environmental Assessment (EA) 9/25/2018
- Data and Information Request from FEMA Contractor 10/15/2018
- Submitted Requested Data 10/29/2018
- Environmental Assessment Complete! 2/22/2019

Grant Application – Next Steps

Target is to publish public notice mid-April 2019 After 30 days, there will be a review and comment period for 30 days

Target is to provide notification of outcome by mid-June 2019

Grant Application – Outcomes

1. Finding of No Significant Impact (FONSI)

2. Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS)

With either determination of a FONSI or the completion of the EIS, consideration of approval of the award cannot be done until after completion of the EHP review.

Conclusions

City of Sharonville – Flood Mitigation Project

Phased Approach

• Allowed for several "go / no-go" decision points

Community Driven Projects

Identified locally

Combination of Projects

• Developed watershed with multiple tributaries

Multi-faceted Team

• Working closely together on a tight schedule provides benefits.

Questions?