i-Tree Hydro: Applying the Model in Urban Forest and Land Use Planning

2019 Ohio Stormwater Conference

Will Ayersman, GISP

Davey Resource Group, Inc.

5/10/2019

Presenter Information – Will Ayersman

- Certified Geospatial Professional (2014)
- Bachelors (2008) and Masters (2010) in Forestry from West Virginia University
- Worked as a GIS Analyst at the Natural Resource Analysis Center in Morgantown, WV
- Summer Field Technician for US Forest Service
- Came to Davey Resource Group, Inc in 2011
- Responsible for project coordination of all GIS project work for municipal and vegetation management clients
- Applying i-Tree applications for approximately 6-7 years

Outline

- What is i-Tree Hydro and what does it provide users?
 - Urban vs. natural hydrology
 - Conceptual model used in this tool
- Hydro model options
 - Topography in reality and in the model
 - Weather data
 - Land cover
 - Green Infrastructure
 - Soil parameters and auto-calibration using streamflow data
- Hydro model uses
 - Base and alternative case scenarios
 - Real world examples
 - Recommendations for new users where to start?
- Use Cases
- Future Developments

The 2019 i-Tree Suite of Tools

Web-based, run in your browser

Installed on a Windows desktop or laptop

Motivation for i-Tree Hydro

Motivation: Improve human wellbeing and biodiversity.

Problem: Urbanization leads to stormwater quantity and quality management problems.

Goal: Sustainably use tree cover to deliver ecosystem services to urban populations.

Model History for i-Tree Hydro

- Origins from discussions between
 SUNY ESF (Dr. Ted Endreny)
 &
 USDA FS (Dr. David Nowak)
- Wanted to replace curve number based runoff models with a processed based hydrological model

St. Elizabeth Hosp. D.C. 2006-2011 Casey Trees

- > TOPMODEL -> OBJTOP -> UFORE -> i-Tree Hydro
- Designed to be a First Order hydrology model to quantify benefits
- First release was a watershed-only model

i-Tree Hydro User Focused Tool

Watershed scale 1st level analyses

vegetation and impervious cover effects on hydrology

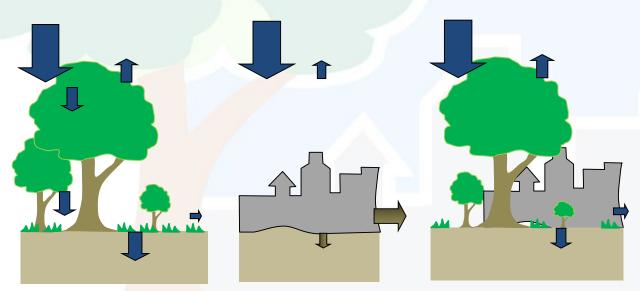

Increase/decrease TC

Increase/decrease IC

Increase/decrease other landcover/veg. types

Hydro quantifies hourly and total changes stream flow, water quality

Great for modeling runoff change from tree canopy levels; water quality data not completely user friendly at this point



The Basics: Urban vs. Natural Hydrology - Part 1

- Urban areas
 - Less vegetation
 - More directly connected impervious surfaces
 - More soil compaction

- Natural areas
 - More vegetation
 - Less impervious surfaces
 - Less compacted soils higher in organic matter

The Basics: Urban vs. Natural Hydrology - Part 2

Imagine a rain drop falling into your community, what might it land on and where would it go next?

Water, tree canopy, pavement, ...

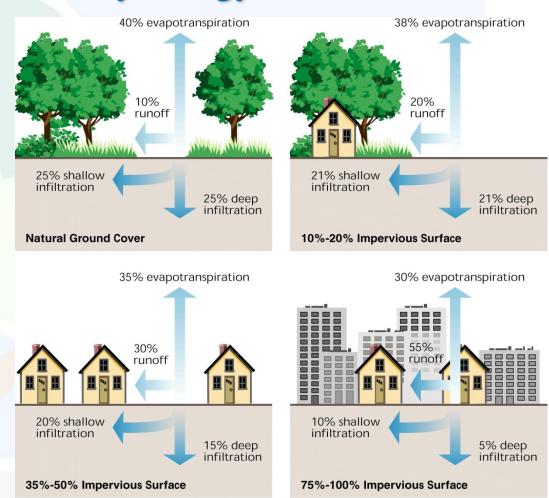
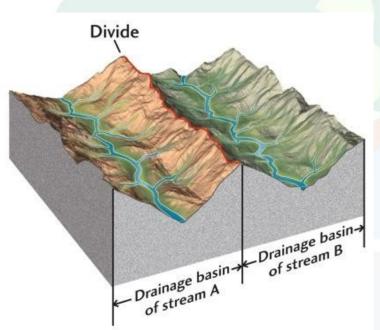
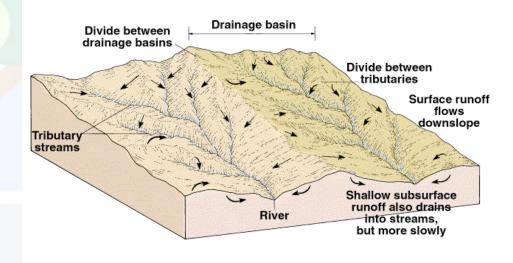


Fig. 3.21 -- Relationship between impervious cover and surface runoff. Impervious cover in a watershed results in increased surface runoff. As little as 10 percent impervious cover in a watershed can result in stream degradation.

In Stream Corridor Restoration: Principles, Processes, and Practices (10/98).

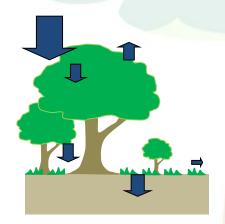
By the Federal Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencies of the U.S.)

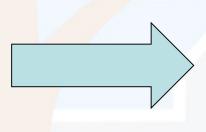


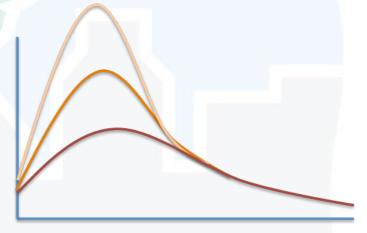

The Basics: Watersheds

* "A watershed is the area of land where all of the water that is under it or drains off of it goes into the same place."

Streams and their Drainage Basins

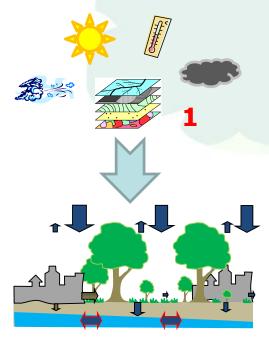


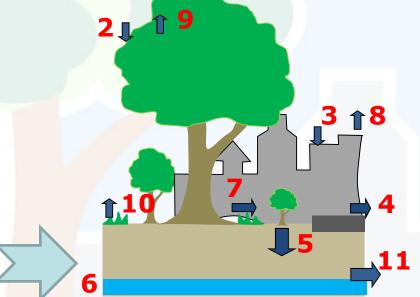




i-Tree Hydro Conceptual Model – Basics

- Rainfall Runoff model
 - > Transformation of rainfall into runoff
 - Effective precipitation -> infiltration -> runoff generation
 - Runoff partitioning baseflow, overland flow, shallow subsurface flow, impervious runoff, etc.
 - Routing of runoff through watershed / to the outlet
 - Building of the hydrograph, timing of flow arrival




i-Tree Hydro Conceptual Model – Processes

- 1 Inputs
 - a) Location
 - b) Weather
 - c) Land Cover
 - d) Topography
 - e) Hydrology & Soil

- 2 Canopy Interception
- 3 Depression Storage
- 4 Impervious Runoff
- 5 Infiltration
- 6 Soil Moisture
- 7 Pervious Runoff

- 8 Surface Evaporation
- 9 Veg Evaporation
- 10 Evapo-transpiration
- 11 Subsurface Runoff
- 12 Semi-Spatial Distribution
- 13 Outputs
 - a) Water quantity
 - b) Water quality

12

R based on Topographic Index

TOPMODEL Concepts (Beven & Kirby, 1979)

$$q_i = P_w \cdot a_i$$

$$q_i = T_i \cdot tan\beta_i$$

$$T_i = T_o \cdot exp\left(\frac{-S_i}{m}\right)$$

$$S_i = m \left[ln \left(\frac{R}{T_o} \right) + ln \left(\frac{a_i}{tan\beta_i} \right) \right]$$

$$TI_i = \ln \left(\frac{a_i}{\tan \beta_i} \right)$$

$$\overline{S} = -m \cdot \ln R /_{T_0} - m \cdot \overline{TI}$$

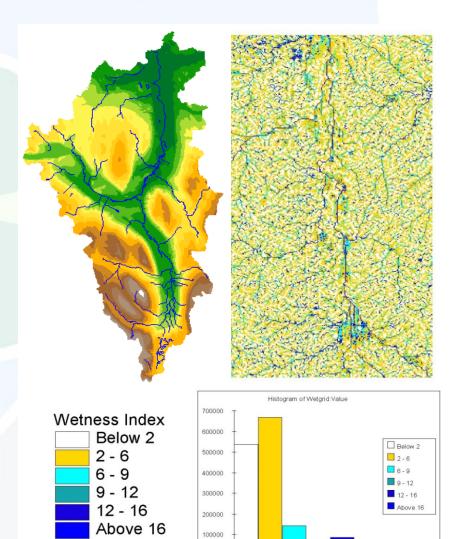
$$Q_{sub} = T_o \cdot exp(-\overline{TI}) \cdot exp(-\overline{S}/m)$$

- q_iis subsurface discharge (m²/hr)
- † i is pixel element
- P_w is precipitation as recharge (m/hr)
- ais local basin area per unit width (m)
- T_i is local transmissivity (m²/hr)
- $tan\beta_i$ is local tangent of hillslope angle
- T_o is local saturated transmissivity (m²/hr)
- S_i is local soil moisture deficit (m)
- n is a scaling parameter
- TI is topographic index
- \overline{S} , \overline{TI} is basin average values
- Q_{sub} is subsurface flow (m³/hr)

References for i-Tree Hydro Theory

- Rutter et al. (1975) canopy interception
- Dijk & Bruijnzeel (2001) throughfall
- Huber & Dickinson (1992) depression storage
- P Beven (1984), Wang et al. (2006) infiltration
- Noilhan & Planton (1989) canopy evaporation
- Shuttleworth (1993) potential evaporation
- Valeo & Moin (2000) impervious runoff
- Beven & Kirkby (1979) pervious runoff
- Beven & Kirkby (1979) subsurface runoff
- Wang et al. (2006) & Yang et al. (2011) model overview

i-Tree Hydro Model Inputs - Topography

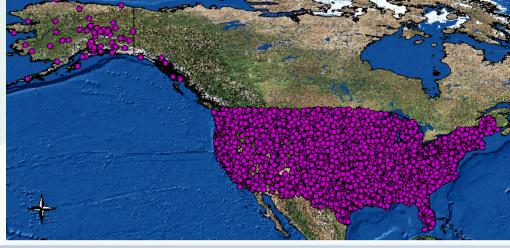

Topography of Actual Terrain

* Digital Elevation Model (DEM)

Topographic Wetness Index (TI)

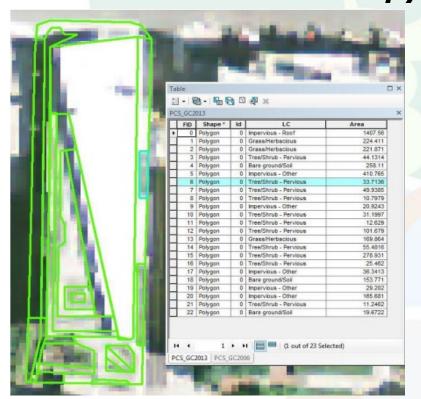
* TI Histogram for Hydro

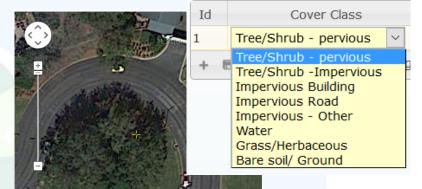
* Input for Hydro topographic data

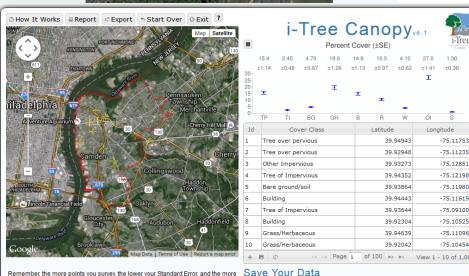


Model Inputs – Weather

	A 100	X		3		8 1	- T-
WeatherData.dat	t - Notepad						
File Edit Format	t View Help						
yyyymmdd	Hr:Min:Sec	Tair(F)	Tdew(F)	NetRad(W/m^2)	WndSpd(m/s)	Precip(m/hr)	Snow(m/hr)
20110101 20110101 20110101 201110101 201110101 20110101	00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 17:00:00 17:00:00 18:00:00 19:00:00 20:00:00 22:00:00 23:00:00 23:00:00 23:00:00 23:00:00	42.7000000 40.0000000 42.10000000 42.90000000 36.85000000 36.7600000 36.7600000 37.00000000 47.00000000 47.00000000 47.00000000 49.00000000 49.00000000 49.00000000 49.00000000 49.00000000 49.00000000 49.00000000 49.00000000 49.00000000000 49.000000000 49.000000000000 49.00000000000000 49.000000000000000000000000000000000000	34.9000000 34.10000000 34.10000000 35.00000000 36.00000000 36.00000000 36.00000000 37.00000000 37.00000000 41.10000000 42.00000000 42.90000000 42.90000000 41.90000000 41.90000000 41.90000000 41.90000000 41.90000000 41.90000000 41.900000000 41.900000000 41.900000000 41.900000000 41.90000000000 42.9000000000000000000000000000000000000	0.00000000 0.00000000 0.00000000 0.00000000	3.44210997 2.23513634 3.48681270 2.68216361 0.00000000 1.01922217 1.34108181 0.00000000 0.44702727 0.00000000 2.77156907 3.48681270 2.68216361 3.77389361 3.77132633 4.91729996 3.57621815 3.63582179 3.12919088 3.71032633 5.05140814 6.25838176 6.79481448	0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0005400 0.0000000	0.0000000 0.0000000







Model Inputs – Land Cover 1 - Sources

GIS, blueprints, or the most popular approach: *i-Tree Canopy*

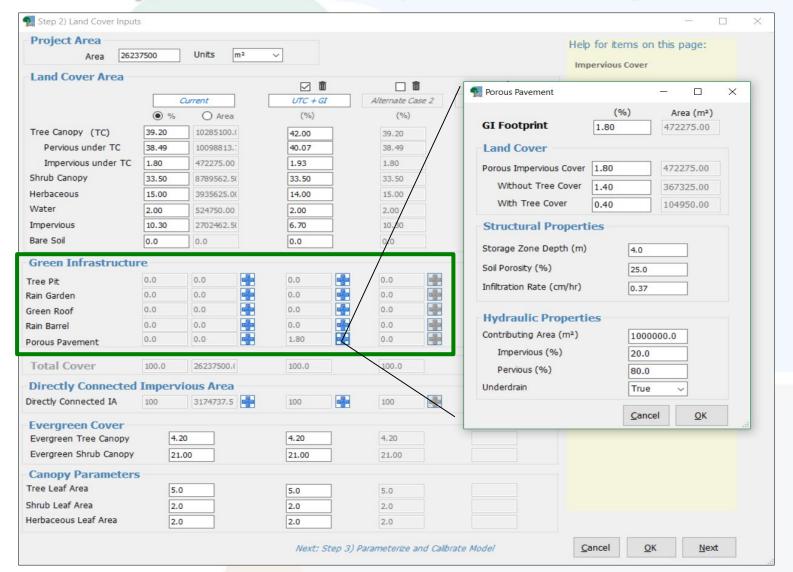
precise your sampling will be. More points surveyed provide for a better estimation of

Save Data Save Early. Save Often. Don't lose your project data!

Model Inputs – Land Cover 2 – Variables

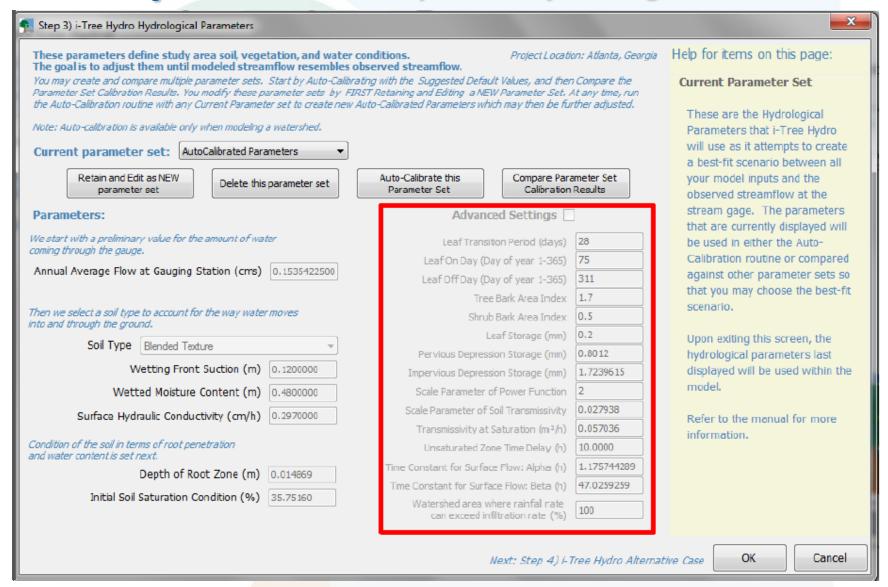
- Land Cover
 - > 5 main cover classes
 - Bare Soil
 - Shrub/Grass/Herbaceous (Short Vegetation)
 - 3. Impervious Surface
 - Tree Cover over Impervious Area
 - Tree Cover over Pervious Area

i-Tree Canopy survey for photo-interpretation of i-Tree Hydro's land cover inputs



i-Tree Hydro Model Inputs – Green Infrastructure

Initiative

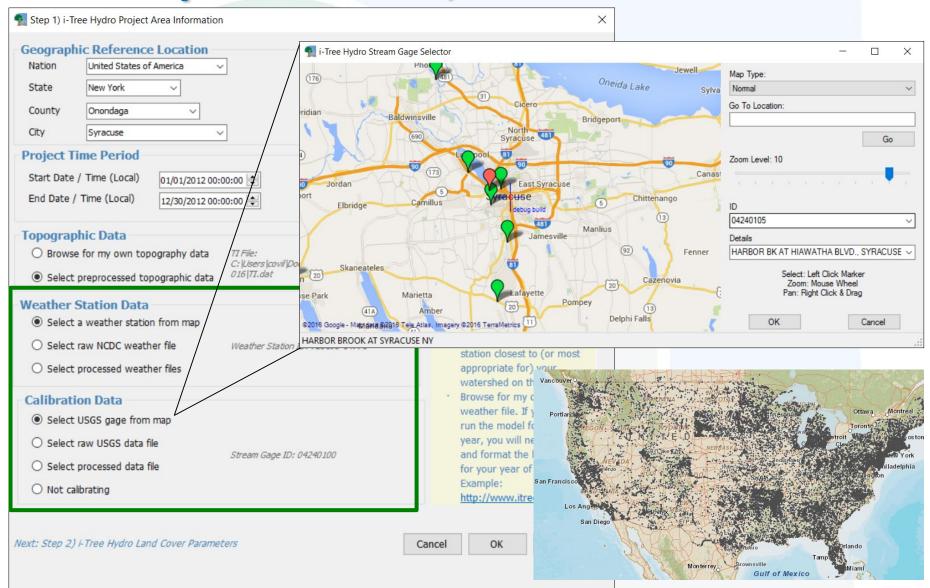


i-Tree Hydro Model Inputs – Hydrologic Parameters

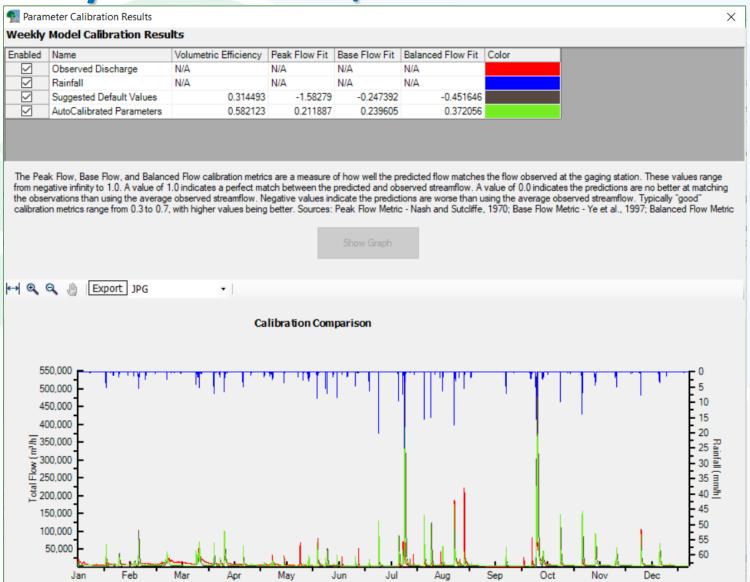
i-Tree Hydro Model Inputs - Calibration 1

Calibration

- Purpose:
 - Soil parameters based on accessible field observations
 - Increases accuracy of absolute value estimates
- > Method:
 - Model optimization algorithm
 - Repeated model runs
 Comparing predicted and observed values
 - Maximize goodness-of-fit metrics
- > Problems:
 - Equifinality Different parameter sets, same optimum
 - Disagreement between field data and model parameters



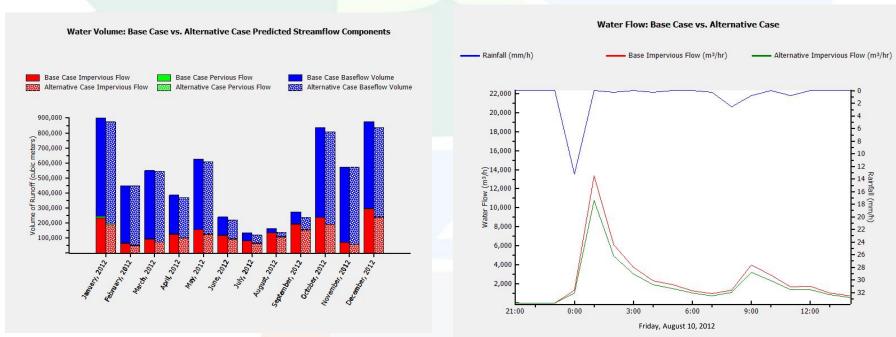
i-Tree Hydro Model Inputs - Calibration 2



i-Tree Hydro Model Inputs - Calibration 3

i-Tree is a Cooperative Initiative

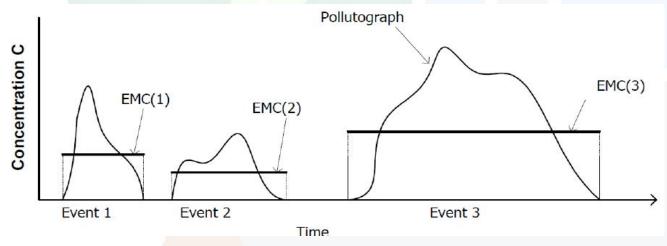
among these



Outputs

- Water Quantity Outputs
 - Predicted streamflow vs. observed (if available)
 - > Yearly, monthly, weekly, daily bar-graphs
 - > Hourly time-series chart & table with export options

Exported Figures from i-Tree Hydro's Sample Project



Outputs

- Water Quality Outputs
 - Pollution Loading estimates
 - Total pollutant mass
 - Based on EMC values
 - nationwide defaults from EPA's NURP data
 - Localized values for TN, TP, and TSS available soon
 - Available in same formats as water quantity outputs

Common Research Questions

P How will that affect our storm water runoff if I increase canopy by/to "X" percent?

What happens if we lose tree canopy?

P How do these scenarios affect our costs?

Does it improve our water quality?

Past Projects and Applications

- Current Stormwater Assessment
- Avoided Runoff Modeling
- Stormwater Pollutant Uptake

Previous Projects:

Sacramento, CA

Edmonds, WA

Tallahassee, FL

Tulsa County, OK

Louisville, KY

Woodland, CA

Cleveland, OH

Columbia, MO

East Lansing, MI

Golden, CO

Plano, TX

Largo, FL

Holyoke, MA

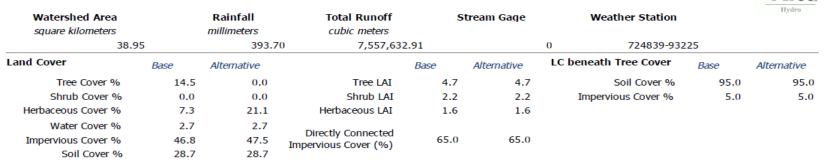
Oakland, CA

Ferndale, MI

Lawrenceburg, IN

Patterson, CA

Oklahoma City, OK



i-Tree Hydro Stormwater Report

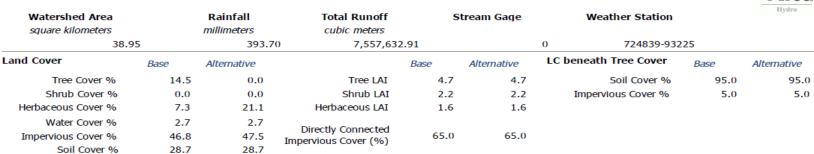
i-Tree Hydro Executive Summary

Project Location: Woodland, California Project Time Span: 01/01/2009 - 12/30/2009

Model Parameters

Streamflow Predictions

Su cumilon i realeuons	Total I	Runoff	Baset	flow	Perviou		Impervious Flow		
	Base	Alternative	Base	Alternative	Base	Alternative	Base	Alternative	
Total Flow (cubic meters)	7,557,632.9	7,601,149.1	26,587.9	26,603.4	3,185,669.6	3,224,900.8	4,345,375.5	4,349,644.8	
Highest Flow (cubic meters / hour)	306,383.5	306,338.3	4.5	4.5	183,068.5	183,075.5	123,311.9	123,259.7	
Lowest Flow (cubic meters / hour)	2.7	2.7	2.7	2.7	0.0	0.0	0.0	0.0	
Highest Flow Date	03/03/09	03/03/09	01/01/09	01/01/09	03/03/09	03/03/09	03/03/09	03/03/09	
Lowest Flow Date	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	
Median Flow (cubic meters / hour)	3.1	3.1	3.1	3.1	0.0	0.0	0.0	0.0	
Number of flow events ABOVE median flow	9.0	9.0	4.0	4.0	13.0	13.0	12.0	12.0	
Average length of flow events with flow ABOVE median (hours)	485.6	485.6	1,299.7	1,299.3	204.6	205.6	213.6	213.6	
High Flow: Number of flow events ABOVE 1 standard deviation	8.0	8.0	1.0	1.0	6.0	6.0	12.0	12.0	
Average length of flow events ABOVE 1 standard deviation (hours)	554.7	554.7	2.0	2.0	271.8	273.7	213.6	213.6	
Number of flow events BELOW median flow	8.0	8.0	3.0	3.0	0.0	0.0	0.0	0.0	
Average length of events BELOW median (hours)	546.0	546.0	1,456.0	1,456.0	0.0	0.0	0.0	0.0	



i-Tree Hydro: Determining Cost Savings **Avoided Runoff**

i-Tree Hydro Executive Summary

Project Location: Woodland, California Project Time Span: 01/01/2009 - 12/30/2009

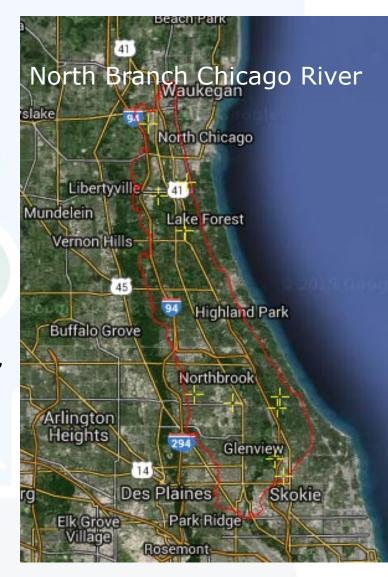
Model Parameters

Streamflow Predictions									
	Total I	Total Runoff		flow	Pervious Flow		Impervious Flow		
	Base	Alternative	Base	Alternative	Base	Alternative	Base	Alternative	
Total Flow (cubic meters)	7,557,632.9	7,601,149.1	26,587.9	26,603.4	3,185,669.6	3,224,900.8	4,345,375.5	4,349,644.8	
Highest Flow (cubic meters / hour)	306,383.5	306,338.3	4.5	4.5	183,068.5	183,075.5	123,311.9	123,259.7	
Lowest Flow (cubic meters / hour)	2.7	2.7	2.7	2.7	0.0	0.0	0.0	0.0	
Highest Flow Date	03/03/09	03/03/09	01/01/09	01/01/09	03/03/09	03/03/09	03/03/09	03/03/09	
Lowest Flow Date	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	01/01/09	
Median Flow (cubic meters / hour)	3.1	3.1	3.1	3.1	0.0	0.0	0.0	0.0	
Number of flow events ABOVE median flow	9.0	9.0	4.0	4.0	13.0	13.0	12.0	12.0	
Average length of flow events with flow ABOVE median (hours)	485.6	485.6	1,299.7	1,299.3	204.6	205.6	213.6	213.6	
High Flow: Number of flow events ABOVE 1 standard deviation	8.0	8.0	1.0	1.0	6.0	6.0	12.0	12.0	
Average length of flow events ABOVE 1 standard deviation (hours)	554.7	554.7	2.0	2.0	271.8	273.7	213.6	213.6	
Number of flow events BELOW median flow	8.0	8.0	3.0	3.0	0.0	0.0	0.0	0.0	
Average length of events BELOW median (hours)	546.0	546.0	1,456.0	1,456.0	0.0	0.0	0.0	0.0	

i-Tree Hydro: Determining Cost Savings Avoided Runoff

4	Α	В	С	D	E	F	G		Н	I	J	K	
1	Avoided Stormwater Runoff from 2005 to 2012				Canopy Pe	rcentage =	1	14.49					
2	Year	Rainfall	Total Runoff	Avoided Runoff									
3		(mm)	(m³)	(m³)									
4	2005	481	9,575,003	52,987			F			G	H		I
5	2006	419	5,230,958	43,859									
6	2007	251	3,953,566	30,668			Canopy Percentage =		14.49				
7	2008	332	6,872,335	38,141					4004.00				
8	2009	394	7,557,633	43,516			Canopy	Acre	25 =		1394.38		
9	2010	529	10,748,824	111,172			Storm V	Ista	r Cost -		0.008		
10	2011	396	7,060,042	84,091			Storill V	vale	COSt =		0.000		
11	2012	482	10,035,877	57,530									
12	Average	410	7,629,280	57,745			Total Re	duce	tion		E-	7745	
13							TOTALKE	auc	tion		3/	7,745	
14	Avoide	d Pollutant Rւ	ınoff (in poı	unds) from Tre	ee Canopy		Total Gallons				15,254,700		
	Year	Mean	Total Suspended	Biochemical	Chemical Oxyg		Gallons per Acre			,940			
15		Concentration	Solids	Oxygen Demand	Demand		Stormwater Contribution		\$122	2,038			
16	2005	Median	6,365	1,343	5,1		010111111				YLL	.,000	
17	2003	Mean	9,156	1,647	6,:								
18	2006	Median	5,269	1,112	4,								
19	2000	Mean	7,579	1,363	5,		SU	12	107	87	1/1,8/18		
20	2007	Median	3,683	777	3,020	0 :	18	7	99	22	7,627		
21	2007	Mean	5,298	953	3,568	8 2	21	9	117	61	10,027		
22	2008	Median	4,580	967	3,757	7 :	22	9	124	61	9,519		
23		Mean	6,589	1,185	4,438		26	11	145	76	12,471		
24	2009	Median	5,227	1,103	4,287		25	10	141	69	10,861		
25		Mean	7,518	1,352	5,063		30	12	166	86	14,229		
26	2010	Median	13,355	2,818	10,954		53	25	360	177	27,753		
27		Mean	19,212	3,455	12,939		77	32	424	221	36,359		
28	2011	Median	10,102	2,132	8,286		48	19	272	134	20,993		
29		Mean	14,532	2,614	9,787		58	24	321	167	27,503		
30	2012	Median	6,911	1,458	5,668		33	13	186	92	14,361		
31		Mean	9,940	1,788	6,695		40	16	219	114	18,813		
32	Average	Median	6,936	1,464	5,689		33	13	187	89	14,411		
		I				_							
33		Mean	9,978	1,795	6,720	0 4	40	16	220	115	18,884		

Other Use Cases

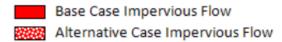

i-Tree Hydro Watershed Parameters

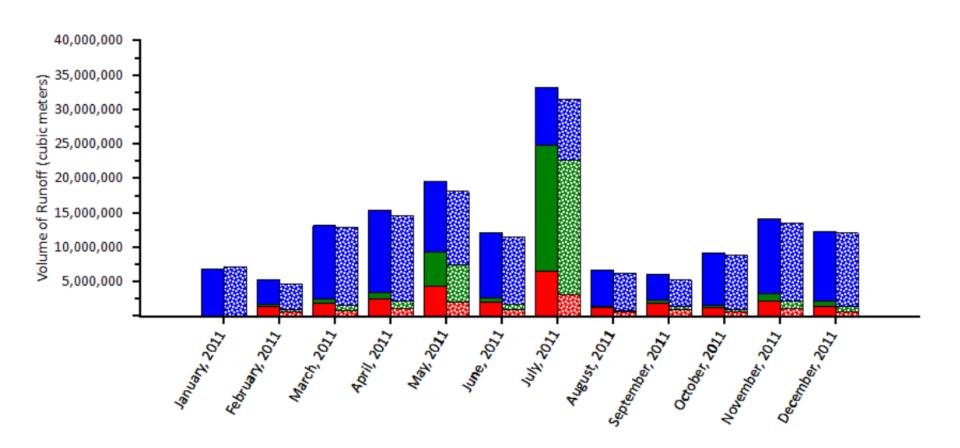
Pre-loaded inputs

- Watershed area: 254.8 km²
- USGS stream gauge data/Calibration Data
- Weather station: CHICAGO/O'HARE

User supplied inputs

- Time period of interest (2005-2012)
- Relative cover Tree, pervious, impervious, shrub, herbaceous, water, soil
- Directly connected impervious area
- Leaf area index
- DEM
- Alternative scenario

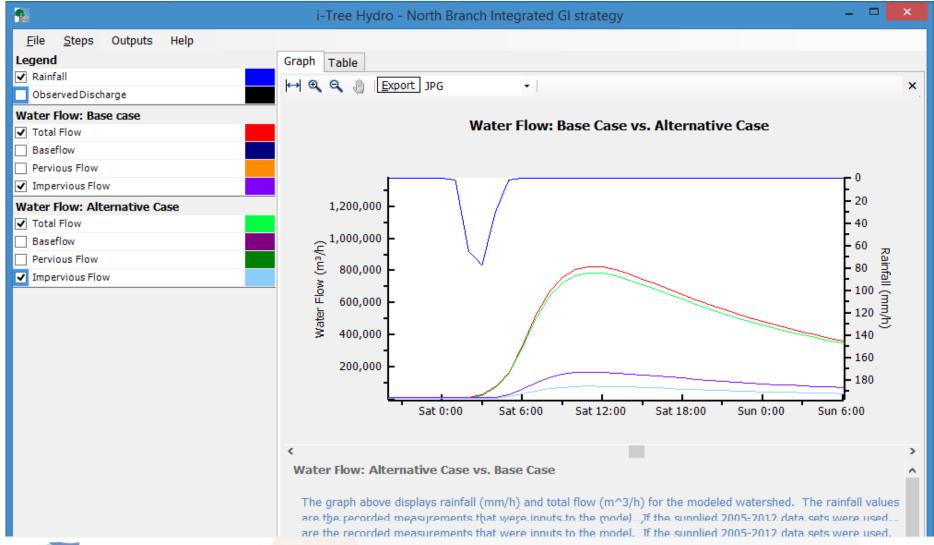



Watershed example output: Base vs Alternative, monthly timestep

Base Case Pervious Flow
Alternative Case Pervious Flow

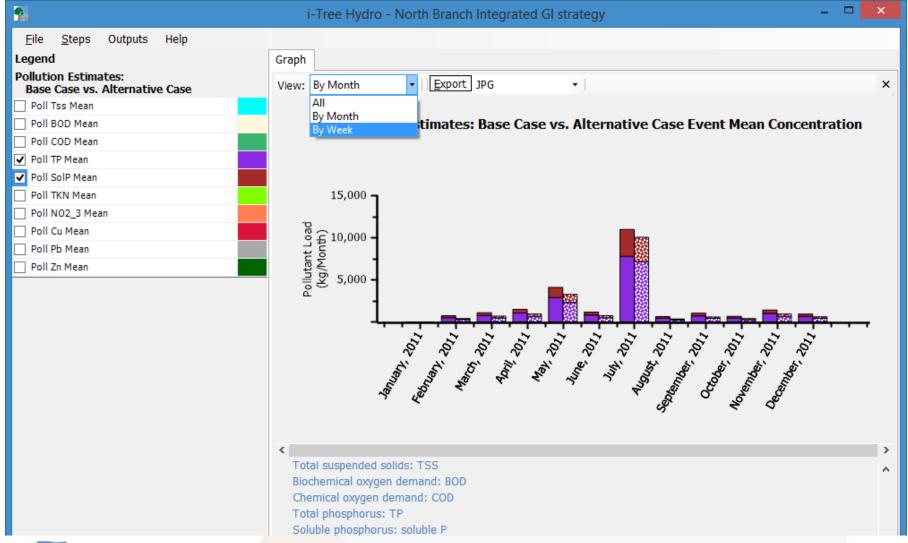
Base Case Baseflow Volume

Alternative Case Baseflow Volume



Watershed example output: Base vs Alternative, hourly timestep

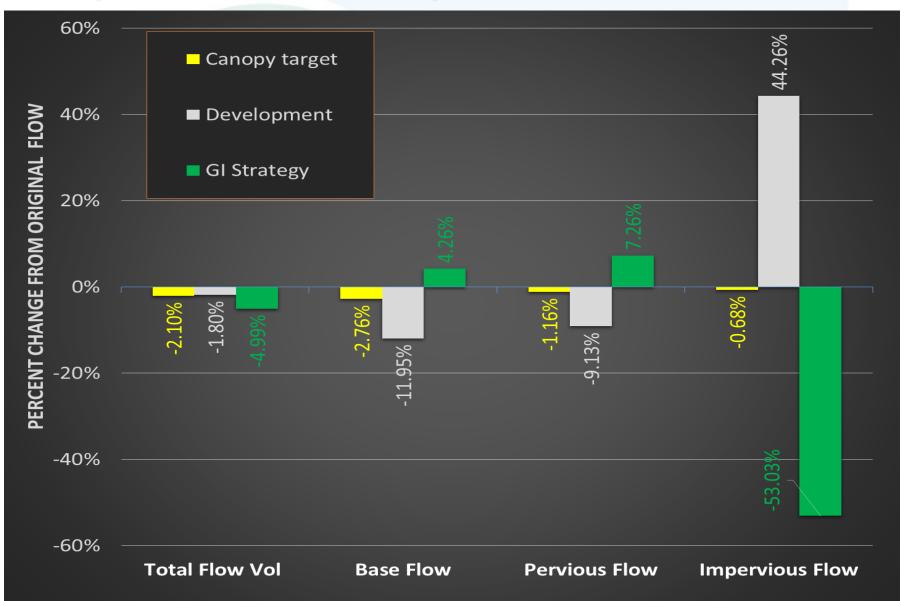
i-Tree is a



Watershed example output: Pollutant Estimate Base vs Alternative

Watershed Project: Geographical & land cover inputs

	Base Case	Tree Canopy – focus on tree canopy increase	Development – increase in gray and decrease in green	Integrated GI – increase tree and other GI strategies
TOTAL AREA (km²)	258	258	258	258
Land Cover Area (%)				
Tree Canopy (TC)	36.0	45.0	32	41
Pervious under TC	91.7	88.9	90	90
Impervious under TC	8.3	11.1	10	10
Shrub Canopy	15.5	12.0	14.5	14.5
Herbaceous	15.5	12.0	12.5	14.5
Water	2.0	2.0	2.0	2.0
Bare Soil	.3	.3	.3	1.3
Impervious	30.7	28.7	38.7	26.7
Directly Connected Impervious Area (%)	29.2	29.2	34.2	15.0



Multiple scenario comparisons

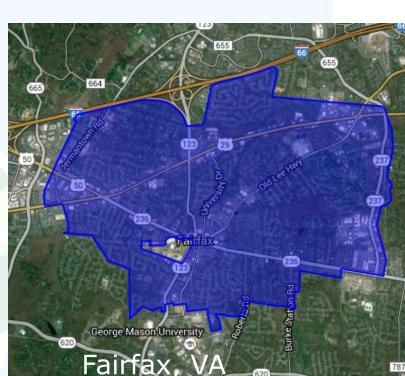
i-Tree Hydro: Municipality example

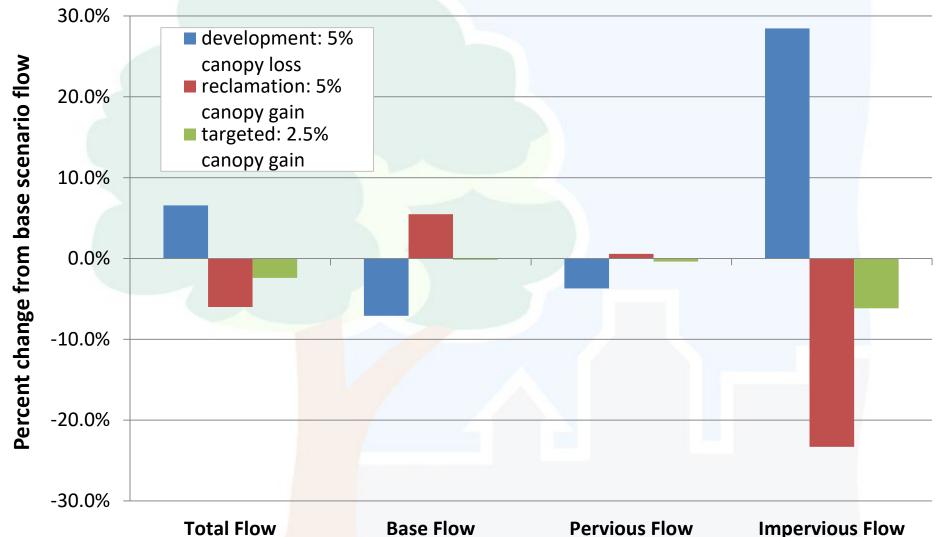
Pre-loaded inputs

- Watershed area: 16.3 km²
- USGS stream gauge data/Calibration Data
- Weather station: Davison AAF
- Topographic Index

User supplied inputs

- Time period of interest (2005-2012)
- Relative cover
 Tree, pervious, impervious, shrub, herbaceous, water, soil
- Directly connected impervious area
- Leaf area index
- Alternative scenario





Municipality example output: Planning scenarios

Future Modeling

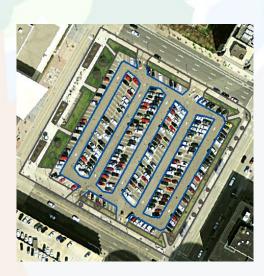
i-Tree Hydro project scale example:

Green infrastructure (GI) cases

BASE CASE

GI 2

Parking Lot: 1 Square Block Minneapolis, MN



Parking Lot: with Permeable Pavement

GI Project: Geographical & land cover inputs

Geographic Location:

Parking Lot, 1Square Block -Minneapolis, MN

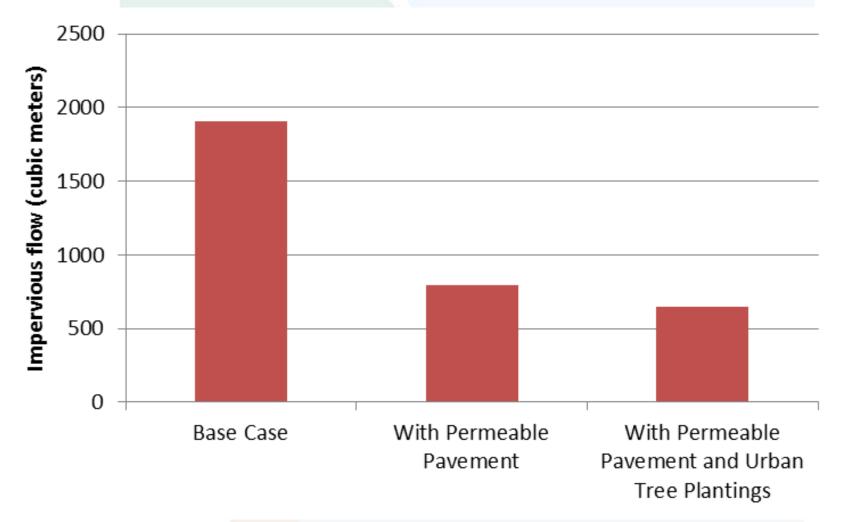
Weather Data:

CRYSTAL 726575-94960

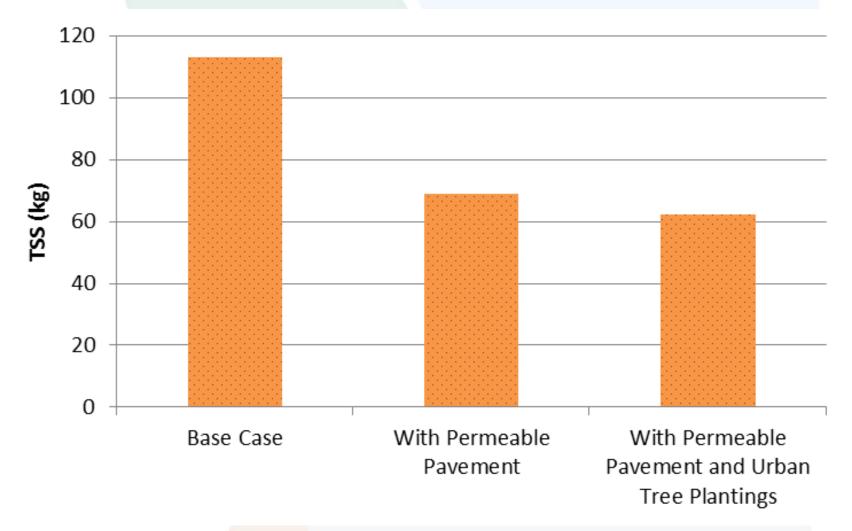
Time Period:

- 01/01/2012 - 9/30/2012

	Base Case	GI 1 – Permeable Pavement	GI 2 – Permeable Pavement and Urban Tree Plantings
TOTAL AREA (m²)	12,488	12,488	12,488
Land Cover Area (%)			
Tree Canopy (TC)	2.3	2.3	5.1
Pervious under TC	82.3	82.3	78.8
Impervious under TC	17.7	17.7	21.2
Shrub Canopy	0	0	1.1
Herbaceous	10.9	10.9	8.3
Water	0	0	0
Bare Soil	0	38.3	38.1
Impervious	86.7	48.5	47.5
Directly Connected Impervious Area (%)	31.4	23.4	19.3



GI Project Output: Impervious flow by case



Gl Project Output: Total suspended solids by case

Contact Information and Links

- How to obtain i-Tree Hydro
 - https://www.itreetools.org/hydro/
- Technical Support
 - https://www.itreetools.org/support/index.php
 - ▶ (877) 574-8733
- Assessment and Analysis
 - William.Ayersman@davey.com
 - > 330-673-5685 x8048

