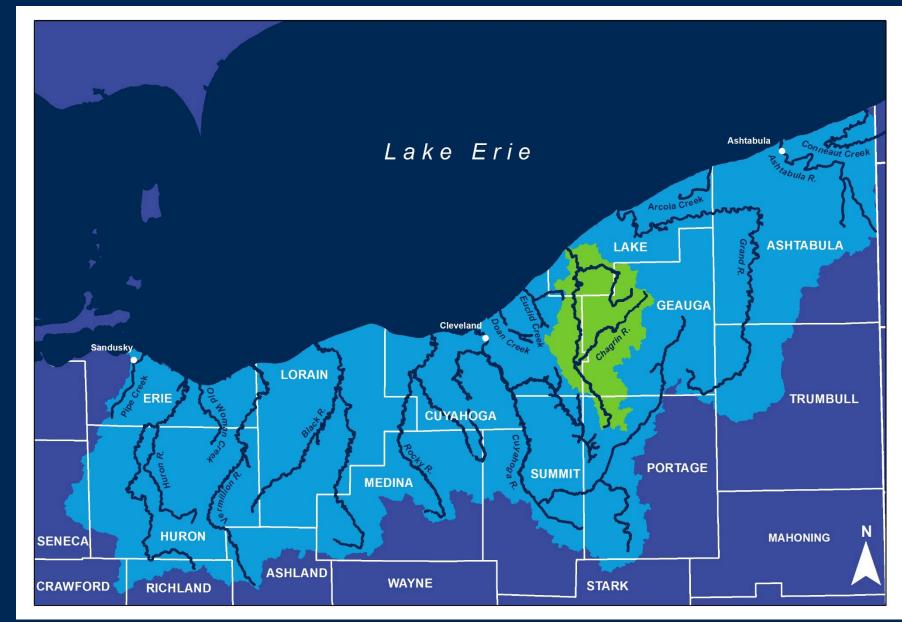
Forests for the Future: Adapting Riparian Habitats in Northeast Ohio Alicia Beattie, Associate Director

CHAGRIN RIVER WATERSHED PARTNERS

Chagrin River Watershed Partners

- Founded in 1996 by watershed communities and park districts
- 34 members
- Supported by member dues, grants, service agreements, and donations



CRWP Sponsors

land - people - community

Central Lake Erie Basin Collaborative

What does CRWP do?

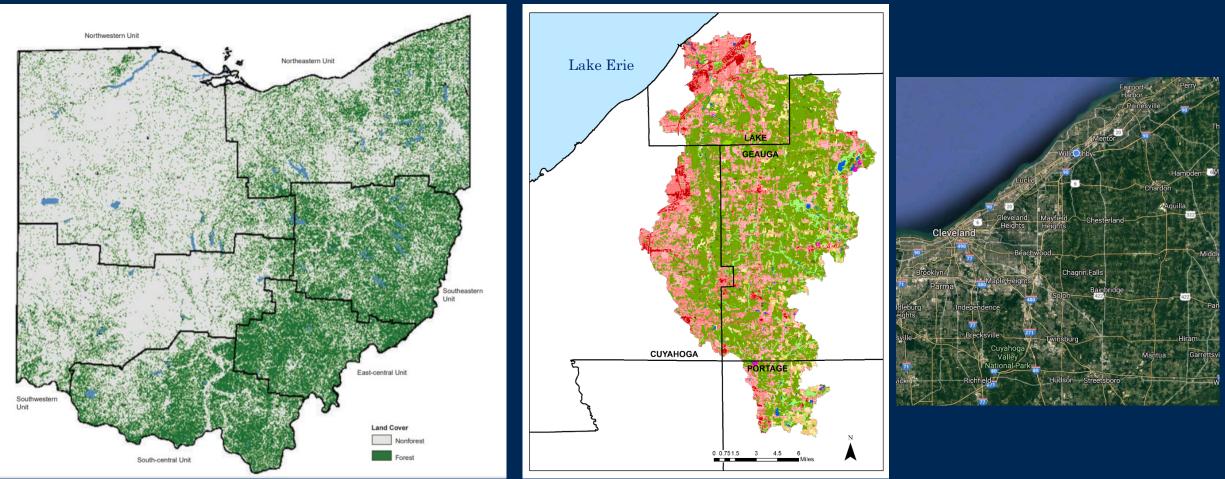
- Watershed planning and project implementation
- Model regulations for natural resource
 protection
- Direct landowner assistance and public outreach

Chagrin River Watershed

- 71 miles designated as State Scenic
- Many high-quality coldwater streams
- State Threatened Ohio Brook Trout
- Forest cover > 50%

Salvelinus fontinalis

Healthy Streamside Forests:


- Filter nutrients and sediment
- Reduce flooding
- Shade and cool streams
- Sequester carbon
- Provide wildlife habitat
- Enhance recreational opportunities

Forests Threats

Urbanization and fragmentation

Source: Forest Inventory and Analysis program, Ohio, 2011.

Forests Threats

Diseases

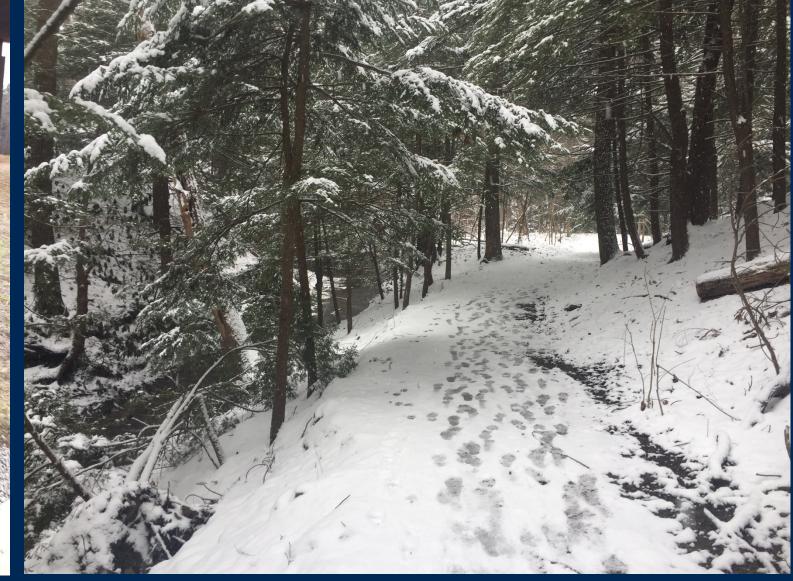
Deer browse

Invasive animals

Invasive Plants

I CHAGRIN I RIVER

PARTNERS


Ohio DNR photos of pests

Educational display at Cleveland Museum of Natural History

Hemlock Wooly Adelgid Sign at Hocking Hills State Park

Trail at Penitentiary Glen, Lake Metroparks

Impact of Climate Change on Regional Forests

Central Appalachians *Ecosystem Vulnerability Assessment and Synthesis*

Soil moisture patterns will change, with drier soil conditions in summer and fall.

Early growth and advance regeneration will be vulnerable to changes in moisture.

Invasive plants, pests, and pathogens will increase or become more damaging.

Suitability for southern species will increase.

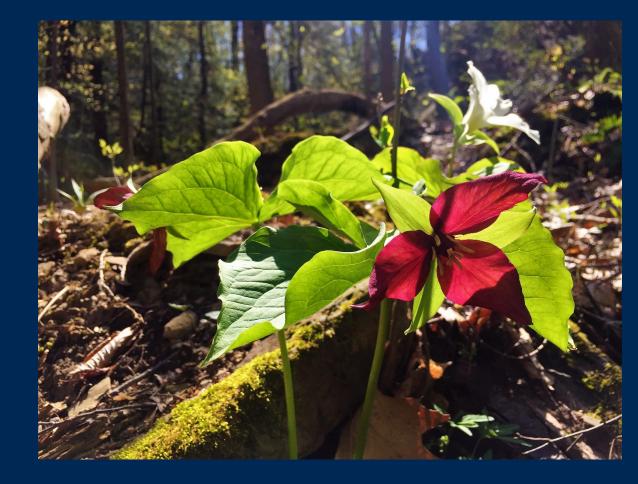
Suitability for northern species will decline.

Why focus on forests surrounding coldwater streams?

- Groundwater connections
- Species relying on clean, cold water at risk
- Steep ravines with cooler microclimates serving as critical refugia
- Gems of Northeast Ohio with high species diversity

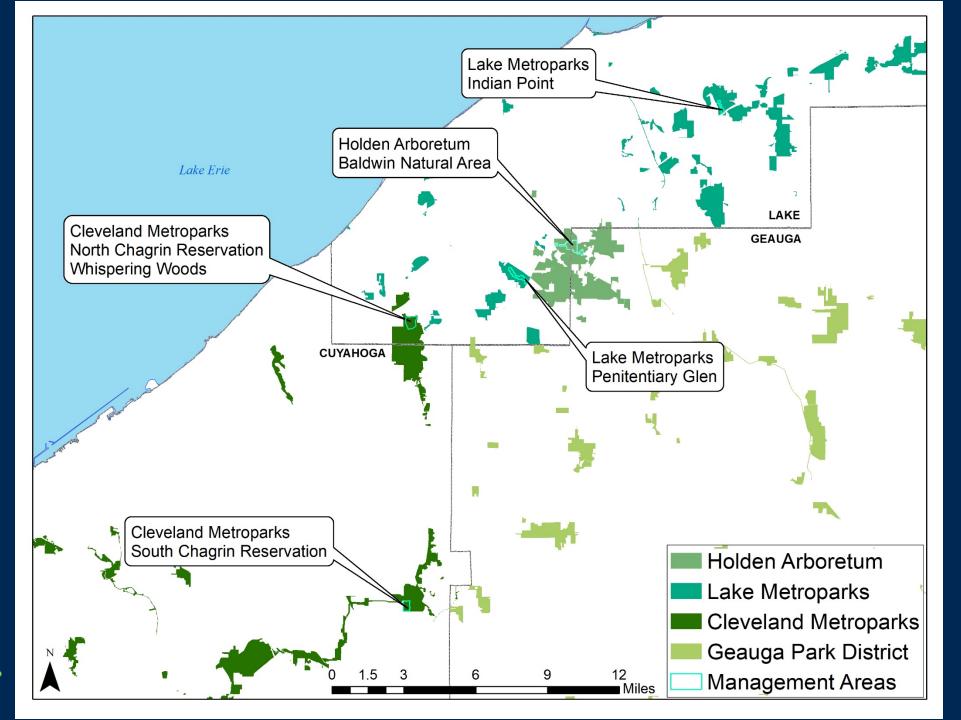
Stebbins Gulch, Holden Arboretum

Targeted Riparian Forest Adaptation to Protect Coldwater Streams


- One of 12 projects funded nationwide in 2017
- \$181,152 award matched with \$184,123 cash and in-kind services
- Project Goal: increase health of 500 acres of forests surrounding coldwater streams in Chagrin and lower Grand river watersheds

Project Partners

- Cleveland Metroparks
- Cleveland Museum of Natural History Trout Club
- Geauga Park District
- Holden Forests & Gardens
- Lake Erie Allegheny Partnership for Biodiversity
- Lake Metroparks
- Lake County Soil and Water Conservation District
- Lake County Stormwater Management Department
- Ohio Central Basin Steelheaders
- Old Woman Creek National Estuarine Research Reserve
- Think Media Studios
- Village of Gates Mills
- Village of Moreland Hills
- Western Reserve Land Conservancy Dominion watershed mini-grant program



Project Overview

- Stream and forest assessments
- Consultations with forestry experts
- Management to enhance forest health
 - Complex structure and composition
 - Native species regeneration and invasive species control
 - Shading to protect coldwater streams
- Communications strategy with workshops, video and direct landowner assistance

CHAGRIN RIVER WATERSHED PARTNERS

Field Assessments

- Vegetative Index of Biological Integrity (VIBI)
- Spring ephemeral rapid assessment (SERA)
- Rapid Upland Forest Assessment (RUFA)
- Headwater Habitat Evaluation Index (HHEI)
- Surveys for Hemlock Wooly Adelgid and Elongate Hemlock Scale

Field Days with Advisory Committee April 2018

- Staff from TNC, ODNR Forestry, USFS, The Ohio State University, The Wilderness Center, project partners
- Collaborative dialogue to discuss issues and adaptation strategies across sites

Cleveland Metroparks Sites

South Chagrin Reservation

North Chagrin Reservation

Photo credit: Dr. Constance Hausman

Lake Metroparks Sites

Penitentiary Glen

Indian Point

Hemlock Treatments at Penitentiary Glen

Measuring basal area

Dinotefuran treatment

Treated hemlocks

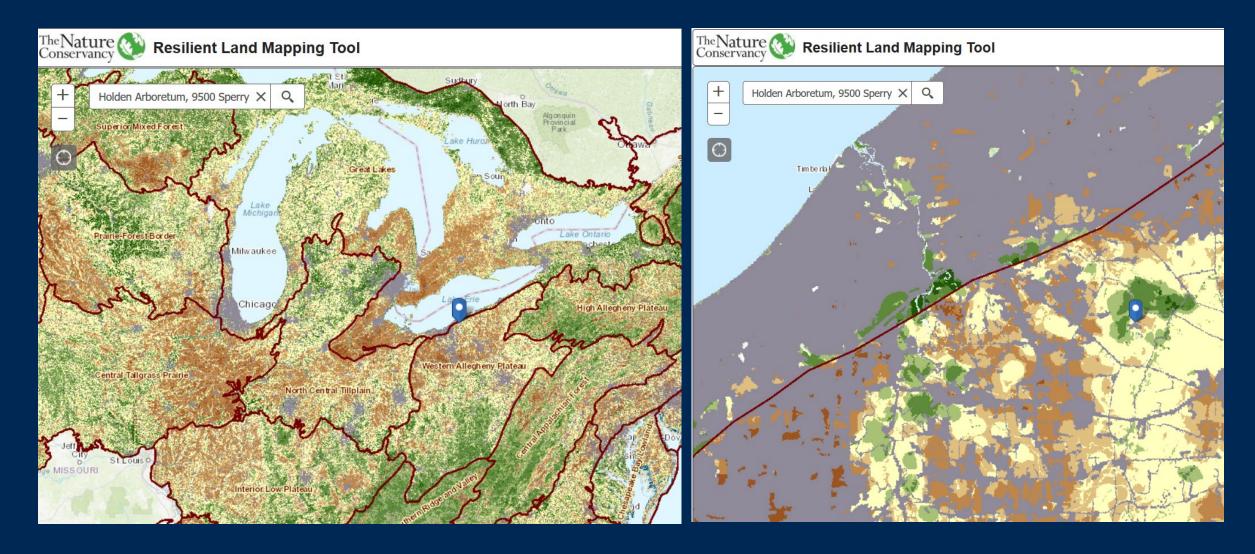
Holden Arboretum Sites

Adaptation Strategies and Approaches

Options

Resist Change

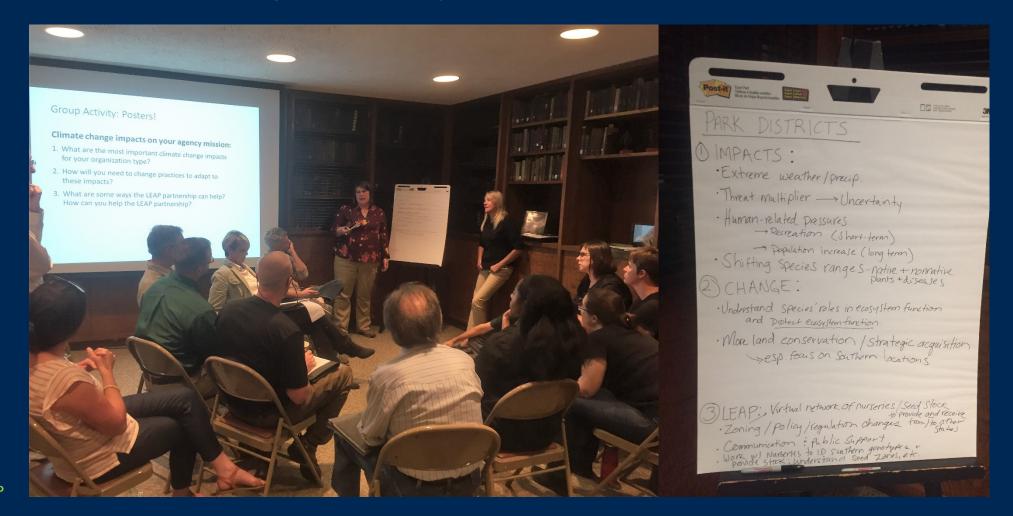
Enhance Resilience


Promote a transition

Strategies

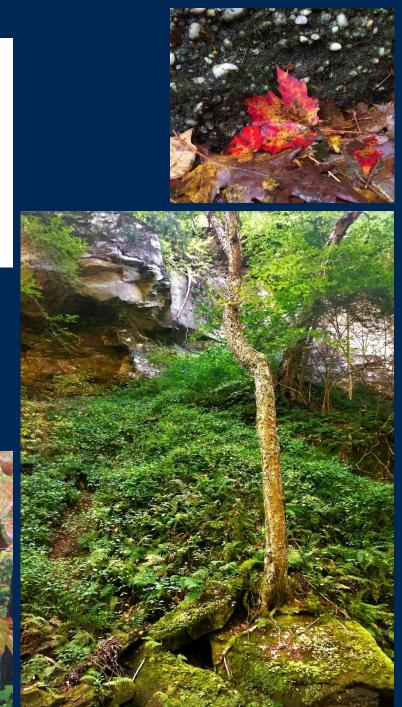
1: Sustain fundamental ecological functions. 2: Reduce existing biological stressors. 3: Reduce impacts of severe disturbances. 4: Maintain or create refugia. 5: Enhance species and structural diversity. 6: Promote ecosystem redundancy. 7: Increase landscape connectivity. 8: Enhance genetic diversity. 9: Facilitate species transitions. 10: Realign after disturbance.

Source: Patricia Leopold. www.adaptationworkbook.org/niacs-strategies



LEAP Biodiversity Vision

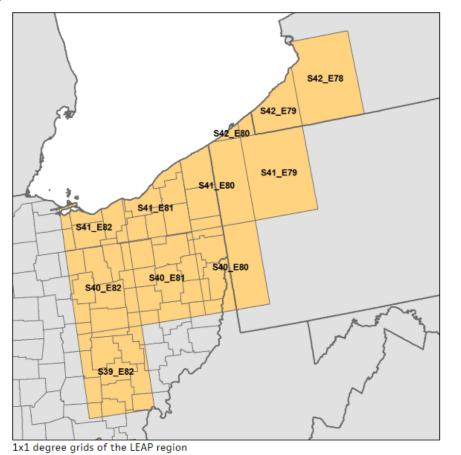
Workshop on Climate Change Vulnerability and Adaptation held Sept 19, 2018



CHAGRIN RIVER WATERSHE PARTNERS

Changing Climate, Changing Trees

Forest is the dominant native habitat of the LEAP region, and our forests will be altered significantly by climate change in the coming decades. More than a third of the region's tree species will be less able to survive here by the end of the century, according to a study of the LEAP region by scientists at the U.S. Forest Service Landscape Change Research Group.


Tree Habitat Suitability Modeling for LEAP Region completed in 2018 by USFS Northern Research Station and Northern Institute of Applied Climate Science

Tree species tables for 1x1 degree grids

							nd Potenti	al Future H	labitat and	Canabilit	N .						Delaware
										1							
		Scientific Name	ModRel	%CellFIA 18.8	FIAiv 9		ChngCl45	ChngCl85	Adap Abu		apabil45	Capabil85	%OccCol 56.2	%2Col 68	%AnyCol 68	HQCL45 2.75	HQCL85 I
hite oak		Quercus alba Liriodendron tulipifera	Medium	63.3	13.5		Sm. inc. No change	No change	6.1 Com 5.3 Abu		ery Good ery Good	Good Very Good	79.5	53.2	53.2	3.34	2.63
llow-poplar		Carya cordiformis	High	46.2	15.5			No change	5.6 Abu		ery Good ery Good			55.2	51	2.97	2.99
rthern red oak		Ouercus rubra	Low Medium	85.3	5.9		No change	No change	5.4 Abu			Very Good Good	78.6	36.7	36.7	2.9/	2.50
				96.2	14.3		No change	Sm. dec.	5.8 Abu					30.1	30.1	4.68	3.51
gar maple xelder		Acer saccharum Acer negundo	High	90.2	14.5		No change No change	Sm. dec.	7.4 Com		ery Good	Good Good	79.6	72.7	72.7	2.52	2.53
ack walnut			Low	22.7	3.7			No change	4 Com			Good	40.8	66.5	66.5	2.52	2.55
astern hophornbeam; i		Juglans nigra	Low	10	1.7		Sm. inc.	Sm. inc.	6.4 Com		ood	Fair	70.9	65.3	65.3	2.75	2.73
		Ostrya virginiana			1./		No change	Sm. dec.	4.4 Com			Good	70.9	44.5		2.86	2.91
agbark hickory		Carya ovata	Medium	60.9			No change	No change									
een ash		Fraxinus pennsylvanica	Low Medium	71.6	10.2		No change	No change	4 Abu 6.4 Com		ood	Good Good	79.8	35.9	35.9	3	3.82
iroak		Quercus macrocarpa					No change	No change									1
merican elm		Ulmus americana	Medium	99.6 1.3	7.2		No change	Sm. inc.	4 Abu 4.1 Rare		ood ood	Very Good	79.8	25.1	25.1	3.94	5.86 1.03
veetgum		Liquidambar styraciflua	High				Lg. inc.	Lg. inc.				Good				-	
d maple		Acer rubrum	High	100	18.6		Sm. dec.	Lg. dec.	8.5 Abu		ood	Good	79.8	11.8		5.32	1.88
ack oak		Quercus velutina	High				No change	No change	4.9 Com			Fair		77.4		2.74	
ppery elm		Ulmus rubra	Low	8.5	3.8		No change	No change	4.8 Com			Fair	61.4				2.74
ack locust		Robinia pseudoacacia	Low	21.2	7.8		No change	No change	3.8 Com			Fair	79.3	71.5		2.99	2.99
sage-orange		Maclura pomifera	Medium	2.8	13.9		Sm. dec. Sm. dec.	Sm. dec. Sm. dec.	6.3 Com 2.8 Abu			Fair Fair	24	66.4 57.6		2.93	2.09
n oak		Quercus palustris	Low		5.9												
ver maple		Acer saccharinum	Low	31.1			Sm. dec.	No change	5.6 Com			Good	79.4	55.4		3	3
ackgum		Nyssa sylvatica	Medium	25.8	3.5		Lg. dec.	Sm. dec.	5.9 Com			Fair	79.5	53.8		2.99	2.99
nerican beech		Fagus grandifolia	High	65.8	8		Sm. dec.	Lg. dec.	3.6 Abu			Fair	77.9	42.3	42.3	2.97	3
iite ash		Fraxinus americana	Medium	99.6	11.7		No change	No change	2.7 Abu			Fair	79.8	32.4		4.75	3.36
ack cherry		Prunus serotina	Medium	100	13.9		Sm. dec.	Sm. dec.	3 Abu			Fair	79.8	24.5		4.28	3
wering dogwood		Cornus florida	Medium	2	1		No change	No change	5 Rare			Poor	18.3	76.7	76.7	1.62	1.21
rviceberry		Amelanchier spp.	Low	2.6	2		No change	Lg. dec.	4.8 Rare		bor	Very Poor	40.4	76.6		0	0
gnut hickory		Carya glabra	Medium	2.6	3.4		No change	Sm. dec.	4.7 Rare		por	Very Poor	12.3	76.4		1.87	1.63
ack willow		Salix nigra	Low	11.6	4.2		No change	No change	2.8 Com			Poor	35.8	75		2.99	2.31
camore		Platanus occidentalis	Low	7.9	16.6		Sm. dec.	Sm. dec.	4.8 Com		por	Poor	56.9	73.7	73.9	2.65	2.62
aking aspen		Populus tremuloides	High	6.6	3.2		Sm. dec.	Sm. dec.	4.7 Com			Poor	33.2	72.2		0	0
cumbertree		Magnolia acuminata	Low	8.4	2.2		Sm. dec.	Sm. dec.	3.6 Com		por	Poor	46.2	70.8		0	0
llow birch		Betula alleghaniensis	High	5	3.4		Sm. dec.	Sm. dec.	3.4 Com			Poor	36.8	69.6		0	0
merican hornbeam; mi		Carpinus caroliniana	Low	5.9	1.5		Sm. dec.	Sm. dec.	5.1 Com			Poor	69.8	69.3	69.3	0	0
vamp white oak		Quercus bicolor	Low	16.1	6.4		Lg. dec.	Lg. dec.	4.9 Com			Poor	50.4	68.6		2.89	0
ssafras		Sassafras albidum	Low	21.6	3.4		Sm. dec.	Lg. dec.	4.2 Com			Poor	78.2	65.9		2.97	3
stern cottonwood		Populus deltoides	Low	31	10.6		Sm. dec.	Sm. dec.	3.9 Com		por	Poor	72.5	62.8		2.95	2.94
gtooth aspen		Populus grandidentata	Medium	19.3	3.4		Lg. dec.	Lg. dec.	5.1 Com			Poor	69.4	60.4		0	0
arlet oak		Quercus coccinea	Medium	0	0.4	0.1	No change	Lg. dec.	4.6 Rare	e Po	por	Very Poor	3.2	57.4	71.3	1	0
merican basswood	0	Tilia americana	Medium	52.2	6.2	71.8	Lg. dec.	Lg. dec.	4.6 Com		por	Poor	79.8	49.5	49.5	3	3
ack maple		Acer nigrum	Low	1.1	2.6		Lg. dec.	Very Lg. dec.	5.2 Rare			Lost	3.8	22.8		0	0
inkapin oak		Quercus muehlenbergii	Medium	1.1	3	1.5	No change	No change	4.8 Rare		oor	Poor	4	19.1	40.3	1.01	1.17
ramp chestnut oak		Quercus michauxii	Low	1.1	1.6		No change	Sm. dec.	4.6 Rare		por	Very Poor	3.8	13.2		0	0
stern white pine	0	Pinus strobus	High	24.1	8	55.1	Lg. dec.	Very Lg. dec.	3.3 Com	nmon Ve	ery Poor	Lost	51.1	66.1	66.1	2.42	0
stern hemlock	0	Tsuga canadensis	High	2.7	3.1	4.3	Lg. dec.	Very Lg. dec.	2.7 Rare		ery Poor	Lost	8.9	65.6		0	0
ack ash	0	Fraxinus nigra	Medium	0	0.9	1.2	Very Lg. dec.	Very Lg. dec.	1.7 Rare	e Lo	ost	Lost	11.8	60.3	70.8	0	0
n cherry		Prunus pensylvanica	Low	2.1	0		Unknown	Unknown	4.2 Mod		nknown	Unknown	0	74		0	0
eet birch	0	Betula lenta	High	6	0	0	Unknown	Unknown	3.2 Mod	deled Ur	nknown	Unknown	0	62.1	75	0	0
ginia pine		Pinus virginiana	High	12	0		Unknown	Unknown	3.8 Mod		nknown	Unknown	0	30.5		0	0
nerican mountain-ash	0	Sorbus americana	Low	0	0	0	Unknown	Unknown	3.1 Abse	ent Ur	nknown	Unknown	0	0.1	5.2	NA	NA
ish pine		Pinus elliottii	High	0	0		Unknown	New Habitat	4.3 Abse		nknown	New Habitat	0	0		0	0
uejack oak	0	Quercus incana	Low	0	0	0	Unknown	Unknown	4.8 Abse	ent Ur	nknown	Unknown	0	0	0	0	0
	3	Carya alba	Medium	0	0	0	New Habitat	New Habitat	5.4 Abse	ent Ne	ew Habitat	New Habitat	5.5	77.7	79.4	1.49	1.47
ockernut hickory			Low	0	0		New Habitat	1	4.9 Abse		ew Habitat	New Habitat	0	55.2	72	1	1

Study credits

•U.S. Forest Service Northern Research Station, Landscape Change Research Group: Louis Iverson, Anantha Prasad, Matt Peters, Steve Matthews •Northern Institute of Applied Climate Science: Patricia Leopold

Resilient Forested Landscapes for the Future

- Requires regional communication and partnerships
- Tough questions about the best way to focus management efforts
- Range of strategies and approaches available for sustainable management, conservation, and restoration of forests

Thank you! Questions?

Alicia Beattie Associate Director abeattie@crwp.org 440-975-3870 *1003