Testing to Determine Design Infiltration Rates for Post-Construction Infiltration BMPs

May 9, 2019 Jay Dorsey, PE, PhD Ohio State University Stormwater Management Program

THE OHIO STATE UNIVERSITY

Stormwater Management Program

Overview of Presentation

Quick infiltration overview
 Subsurface infiltration test considerations/options
 Measuring field infiltration rates for project design

Infiltration

 Infiltration is movement of water through a soil surface
 Infiltration rate or capacity – rate of movement of water through a soil surface (length/time, e.g., in/hr)

For stormwater BMPs, "exfiltration" is infiltration from a BMP into the underlying and surrounding soil

Infiltration Rate vs Hydraulic Conductivity

Hydraulic conductivity (K(h)), saturated hydraulic conductivity (K_s), and field saturated hydraulic conductivity (K_{fs}) are measurable properties of the soil that have physical meaning

Relationship between Infiltration Rate and Hydraulic Conductivity

Fig. 12.3. The infiltration moisture profile. At left, a schematic section of the profile; at right, the water content versus depth curve. The common occurrence of a saturation zone as distinct from the transmission zone may result from the structural instability of the surface zone soil. Source: Hillel (1982)

 $i(t) = K_{fs} \frac{\Delta H}{\Delta L} = K_{fs} \frac{H_{pond}(t) + L_f(t) - H_{suction}(t)}{L_f(t)}$

Importance of Getting the Number Right (and Consequences of Getting It Wrong)

Consequences of overestimating Kfs

- System underdesign
- Loss of hydrologic function (volume reduction, peak flow reduction, groundwater recharge, baseflow maintenance)
- Flooding
- Degraded water quality

Importance of Getting the Number Right (and Consequences of Getting It Wrong)

Consequences of overestimating Kfs
 Consequences of underestimation

 \$\$\$\$

Appropriate Use for Estimates

Methods are available to provide rough estimates of infiltration (exfiltration) rates expected from infiltration BMPs. These methods are appropriate for **preliminary site planning**, i.e., to determine if an LID approach makes sense for a particular site or to develop a ballpark area allocated for infiltration BMPs.

If moving forward with a design that incorporates infiltration BMPs field measured infiltration tests are necessary to determine accurate infiltration rate for sizing and design of BMPs.

Credit toward meeting WQv, runoff volume reduction or peak discharge requirements

Measuring Infiltration Rates

"When using infiltrometers to predict infiltration rates for a given system, one must be careful that the conditions of that system (water quality, temperature, soil conditions, surface conditions, lengths of inundation, infiltration flow system in the soil, etc.) are duplicated as much as possible with the infiltrometer so that the measurement is realistic." H. Bouwer (1986)

Measuring Infiltration Rates

Measuring the process of interest

- Rainfall and runoff at the soil surface
- Seepage in a leach bed
- Exfiltration from a dry well
- Exfiltration from an infiltrative BMP (pervious pavement, bioretention, underground detention/retention system)

Measuring Infiltration Rates

Measuring the process of interest

- Rainfall and runoff at the soil surface
- Seepage in a leach bed
- Exfiltration from a dry well
- Exfiltration from an infiltrative BMP (pervious pavement, bioretention, underground detention/retention system)

Exfiltration from an Infiltration BMP

Source: NC Extension (2009)

Infiltration Test for BMP Design?

Infiltration Test Methods Considered

- > Double-ring Infiltrometer Test
- Single-ring Infiltrometer Test Constant Head
- Single-ring Infiltrometer Test Falling-head
- Modified Phillip-Dunne Permeameter
- > Pilot Infiltration Test (PIT Test)
- > Bore Hole Infiltration Test

Infiltration with Shallow, Ponded One-dimensional Flow

Infiltration Test Methods Considered

- > Double-ring Infiltrometer
- Single-ring Infiltrometer Constant Head
- Single-ring Infiltrometer Falling-head ???
- Modified Phillip-Dunne Permeameter
- > Pilot Infiltration Test (PIT)

Bore Hole Infiltration Test

0

Typically overestimates Kfs by 1000% or more

Minimum Sampling Density

Surface Area of Infiltration BMP (ft ²)	Number of Test Pits	Pit Tests	Single-ring Infiltrometer Tests (2 tests/pit)
<5000	2	2	4
5000-10000	3	3	6
>10000	4	4	8

Choose Appropriate Test Locations

5.

Excavate to Proposed BMP Depth

Describe Soil Profile from Surface to (at least) 3 Feet Below Proposed Depth

Single Ring Infiltrometer

Single Ring Infiltrometer Equipment

- 1. Rings (measuring cylinders)
- 2. Depth gages or rules
- 3. Graduated water supply reservoir (Mariotte bottle)
- 4. Stop watch
- 5. Field sheet/clipboard
- 6. Screen or cloth for initial wetting
- 7. Shovel, garden hoe, soil auger

Install Infiltration Rings

Wet Surface and Bring to Ponding Depth

Record Volume Infiltrated While Maintaining Constant Depth

Post-Processing - Determine Final Field Measured Intake Rate (q_s)

Ponded Ring Infiltrometer Test Accounting for Flow Divergence

REYNOLDS & ELRICK: PONDED INFILTRATION FROM A SINGLE RING: L

1233

[1]

of check plot yield and local control, Plant Brend, 103:286-292, Samra, J.S., H.S., Gill, R. Anlauf, and J. Richter, 1989b. Geostatistical evaluation of soil sodicity and growth of Melia azedarach Lina. as simultaneous stochastic processes. Soil Sci. 148:361-369. Samra, J.S., K.N.S. Sharma, and N.K. Tyagi. 1988. Analysis of spatial variability in sodic soils: 1, Structural analysis, Soil Sci. 145:180-187

Soltanpour, P.N., and A.P. Schwab, 1977. A new soil test for simultaneous extraction of macro and micro nutrients in alkaline soil, Commun. Soil Sci. Plant, Anal. 8:195-207

Tamura, R.N., L.A. Nelson, and G.C. Naderman. 1988. An investigation of the validity and usefulness of trend analysis for field plot data. Agron. J. 80:712-718. Transmar, B.B., R.S. Yost, M.K. Wade, G. Uehara, and M. Sudjadi. 1987. Spatial variation of soil properties and rice yield on recently cleared lands. Soil Sci. Soc. Am. J. 51:668-674.

van Es, H.M., C.L. van Es, and D.K. Cassel. 1989. Application of regionalized variable theory of large-plot field experiments. Soil Sci. Soc. Am. J. 53:1178-1183.

Webster, R. 1985. Quantitative spatial analysis of soil in the field. p. 1-70. In B.A. Stewart (ed.) Advances in Soil Science. Vol. 3. Springer Verlag, New York, Williams, E.R. 1986. A neighbour model for field experiments.

Biometrika 73:279-288.

Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow .

W. D. Reynolds,* and D. E. Elrick

ABSTRACT

A new analysis of steady, ponded infiltration from within a single ring takes soil hydraulic properties, ring radius, depth of ring insection, and depth of panding into account. It also provides a means for determining the field-saturated hydraulic conductivity (K_0) and the matric flux potential (\$\$\phi_n\$). The analysis employs numerically determined shape factors (G) that are found to depend significantly on ring radius (a) and depth of ring insertion (d), but only slightly on depth of ponding (H) and soil hydraulic properties. As a consequence, averaged G values (G₄) can be developed for specified d and a that apply to a wide range of punded heads and soil types. Procedures for calculating K_0 and ϕ_n are based on G or G, and on the ponding of one, two, or multiple II levels in the ring. Test calculations based on G_s suggest that K_0 can be obtained with an accuracy of about $\pm 20\%$ for H = 0.05 to 0.25 m and $\alpha = 1$ to 36 m⁻¹. where α is the soil parameter of the exponential hydraulic conductivity-pressure head relationship. A similar level of accuracy (using G_a) is obtained for ϕ_m when α is small ($\alpha \le 4 \text{ m}^{-1}$), and when both a and H are large ($a > 4 \text{ m}^{-1}$, $H \ge 0.20 \text{ m}$). Significant errors in ϕ_{α} can occur, however, when α is large but H is small. Potentially important features of this single ring method include low sensitivity of the K_{0} calculation to errors in G_{0} reduced measurement errors resulting from small-scale soil variability, and the ability to pond large heads in order to increase flow rates in low-permeability matorials

The sorptivity, S (m s-1/2), may be estimated using (Philip, 1969; White and Sully, 1987)

$$S = [(\theta_{fb} - \theta_{i})\phi_{ci}/b]^{1/2},$$

where θ_{f_0} (m³ m⁻³) is the field-saturated volumetric water content, 6, (m3 m-3) is the background volumetric water content (assumed constant), b (dimensionless) is an empirical constant (defined below), and on is defined by Gardner (1958) as

$$\phi_{ui} = \int K(\psi) d\psi; \quad -\infty \le \psi_i \le 0, \quad [2]$$

where ψ (m) is the pore-water pressure head, ψ_i (m) is the background pore-water pressure head (corresponds to θ_i), and $K(\psi)$ is the hydraulic conductivity-pressure head relationship. Philip (1969) has shown that b = 0.5 exactly for soils exhibiting a step-function (Green-Ampt) infiltration front. For genefal field soils, White and Sully (1987) suggested $b \approx 0.55$ to account for the fact that actual infiltration fronts tend not to be as sharp as a step function. Broadbridge and White (1988) calculated b using

 $b = [4(C-1) + 2.923]/[\pi(C-1) + 1.4615], [3]$

Fig. 1. Schematic of ponded flow from within a ring (r, z = cylindricalcoordinate directions, ρ = spherical coordinate direction, a = ring radius, d = depth of ring insertion, H = steady depth of water ponding in the ring).

[3.4–11]

Source: Reynolds et al (2002)

 $q_s/K_{fs} = Q/(\pi a^2 K_{fs}) = [H/(C_1 d + C_2 a)] + \{1/[\alpha^*(C_1 d + C_2 a)]\} + 1$

Post-Processing – Make Correction for Flow Divergence

	A	В	С	D	E	F	G	Н		J	К	L
1	Field Satura	eld Saturated Hydraulic Conductivity Measurement with Single Ring Infiltrometer										
2	References:	Reynolds	;, W.D. 200	8b. Satural	ted Hydrau	lic Propert	ies: Ring I	nfiltrometer.				
3												
4	Kfs = qs / [(H	₩BF) + (1/(alpha-star'	'RF)) + 1]								
5												
6	Kfs =	field satur	ated hydra	aullic cond	uctivity (in	hr)						
7	as =	Qs/pi*r*;	2		, ,							
8		guasisteady infiltration rate (in/hr)										
9	H =	head - i.e., steady ponded depth of water in the cylinder (in)										
10	alpha-star =	sorptive number of porcus medium (in^-1; see Table 76.1 or determine through multiple constant head test)										
11	BF =	C1*d + C2	Г								,	
12		ring shap	e & installa	ation factor	based on (depth of in	sertion (d.	in) and culin	der radius (r. in	1		
13	C1=	0.316*pi =	0.9927							, 		
14		quasieme	irical cons	tant								
15	C2 =	0.184*pi =	0.5781									
16		quasieme	irical cons	tant								
17		-1										
18												
19		Soil Tupe		Fine								
20		Bing Dian	neter. D =	12.0	inches							
21		Depth of I	nsertion. d	3.0	inches							
22		Depth of F	Pondina, h	6.0	inches							
23		Field Measured										
24		Infiltration Batel os		0.20	inthr							
25												
26							Steadu					
27							Field	Corrected				
28			Depth of				Measured	Field				
29		Culinder	Culinder	Bing	Depth of	Sorptive	Infiltration	Saturated	Overestimation)		
30	Soil Tupe	Diameter	Insertion	Factor	Pondina	Number	Rate	Conductivity	Factor			
31		D	d	BE	Н	alpha-star	as	Kfs				
32		- in	- in	in	in	in^-1	inhr	inthr				
33												
34	Compacted	12.0	3.0	6.4	6.0	0.033333	0.20	0.03	6.6			
35	Fine	12.0	3.0	6.4	6.0	0.1	0.20	0.06	3.5			
36	Loamy	12.0	30	6.4	6.0	0.3	0.20	0.08	24			
37		.2.0	0.0	0.1	0.0	0.0	0.20	0.00	2.1			
38	The estim	ate of fie	d satura	ated hydr	aulic cor	ductivity	is:	0.06	in/hr			
39				,								
35												

$$q_{\rm s}/K_{\rm fs} = Q/(\pi a^2 K_{\rm fs}) = [H/(C_1 d + C_2 a)] + \{1/[\alpha^*(C_1 d + C_2 a)]\} + 1 \qquad [3.4-11]$$

Pit Test Equipment

Water level recorded every 15 minutes

Source: Alice Lancaster, Herrera Environmental Consultants

1. Water level loggers 2. Measuring rod or ruler with readings in mm or 0.01 ft 3. Large water tank or nearby water supply 4. Hoses and fittings 5. Stop watch 6. Field sheet/clipboard 7. Bucket or splash pad for initial wetting 8. Backhoe 9. Shovel & auger

Pit Test Pre-soak

Excavate pit to desired dimensions

Complete Falling Head Tests

Refill pit to 12" ponded depth

Record surface elevation every 30 minutes until pit fully drains, or minimum 6 hours if pit does not fully drain

Post-Processing - Determine Final Field Measured Intake Rate

Infiltration Testing Costs

Single Ring Infiltrometer

- 1. Rings (measuring cylinders) \$100 \$500/12" ring
- 2. Driving cap and fence post driver \$200
- 3. Depth gages or rules
- 4. Graduated water supply reservoir
 - 5-gal bucket with spigot, tape \$30 \$40
 - Mariotte Bottle \$250 ea (small); \$750 ea (large)
- 5. Stop watch \$20
- 6. Field sheet/clipboard
- 7. Screen or cloth for initial wetting
- 8. Backhoe \$400 \$2000/day

- 1. Water level loggers \$500/logger
- 2. Measuring rod or rulers
- 3. Large water supply tank, hoses and fittings\$400
- 4. Stop watch \$20
- 5. Field sheet/clipboard
- 6. Bucket or splash pad for initial wetting
- 7. Backhoe \$400 \$2000/day

Equipment needed to conduct 6 tests/day \$5000-6000 (6 rings, 6 Mariotte bottles, etc. or 7 water level loggers, etc.) Hire – 3-6 tests/day \$2500 - \$6000/day (two techs, backhoe rental, etc.)

Field measurements necessary to determine infiltration rates for infiltration BMP design

> Two methods are acceptable:

- Single-ring infiltrometer
- Pit test

The pit test requires less equipment and is simpler to perform – this method is recommended RAINWATER AND LAND DEVELOPMENT PROVISIONAL APPENDIX A-#

INFILTRATION TESTING FOR STORMWATER PRACTICE DESIGN

DATE: 12/20/18

https://epa.ohio.gov/Portals/35/storm/technical_assistance/ProPractices.pdf

Questions:

Jay Dorsey Dorsey.2@osu.edu

THE OHIO STATE UNIVERSITY

Stormwater Management Program