

Restoring Ecological Function to Headwater Streams

Suzanne Hoehne, Biohabitats, Inc.

Ohio Stormwater Conference May 2019

What is a headwater stream?

- A stream with a drainage area less than 20 square miles (Ohio EPA)
- A perennial stream that has 0.5 L/s or about a 5.5 hectacre (12 acres) watershed – Eastern Pennsylvania (Kaplan et. Al., 2008)
- Smallest channel where flow begins (EPA, 2015)
- First, Second or Third Order stream (Beilfuss, et al, 2007)

Bear Creek Stream Monitoring

- 2012 Construction
- 2012 Planting

Bear Creek Stream Monitoring

QHEI

Bear Creek Stream Monitoring

&

Bear Creek Stream Monitoring

Goal	Attained?	Note/Action	
Dissipate Stream Energy	Vee	Series of riffles and pools, plus a	
	res	wider and shallower cross section.	
Reduce Sedimentation and	Voc	Bed and bank erosion stopped (eco-	
Erosion	res	friendly hard armoring)	
Stabilize/Protect	Voc	Roads, parking, lot and outfalls	
Infrastructure	res	protected	
Improve Habitat	Yes	Limited in riparian category	
	103	Enniced in riparian category.	
Floodplain Connection	Yes	Yes Limited potential	
Water Quality	No	Fair/Poor fish and macroinvertebrate	e
water Quality	110	community scores	_
Stable Dimension and	Vec	Locked dimension and nattern	
Pattern	103	Locked dimension and pattern	14%
Vegetation (85% coverage	No	Currently 30% invasive herbaceous	woody
by native plants)	NU	cover (to be removed in 2014)	herbs
			2016

Stream Function Pyramid

5 **BIOLOGY** » Biodiversity and the life histories of aquatic and riparian life

PHYSIOCHEMICAL *» Temperature and oxygen regulation; processing of organic matter and nutrients*

GEOMORPHOLOGY *» Transport of wood and sediment to create diverse bed forms and dynamic equilibrium*

HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY » Transport of water from the watershed to the channel

Stream Function Pyramid

GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

Bank Assessment for Non-point source Consequences of Sediment (BANCS)

- Model to predict streambank erosion rates
- Methods based on Rosgen (2006) Rosgen, D.L. 2006. Watershed Assessment of River Stability and Sediment Supply (WARSSS). Wildland Hydrology, Pagoas Springs, CO.
- Two Measurements
 - Bank Erosion Hazard Index (BEHI)
 - Near Bank Stress (NBS)
- Erosion rates estimated using bank erodibility curves
 - None for NE OHIO most similar is NC curves

Recommendations of the Expert Panel to Define Removal Rates for Individual Stream Restoration Projects

Joe Berg, Josh Burch, Deb Cappuccitti, Solange Filoso, Lisa Fraley-McNeal, Dave Goerman, Natalie Hardman, Sujay Kaushal, Dan Medina, Matt Meyers, Bob Kerr, Steve Stewart, Bettina Sullivan, Robert Walter and Julie Winters

Accepted by Urban Stornwater Work Group (USWG): February 19, 2013 Approved by Watershed Technical Work Group (WTWG): April 5, 2013 Final Approval by Water Quality Goal Implementation Team (WQGIT): May 13, 2013 Test-Drive Revisions Approved by the USWG : January 17, 2014 Test-Drive Revisions Approved by the WTWG: August 28, 2014 Test-Drive Revisions Approved by the WQGIT: September 8, 2014

Prepared by: Tom Schueler, Chesapeake Stormwater Network and Bill Stack, Center for Watershed Protection

Pollutant Loading

1.2 lb Phosphorus/ton sediment/year

2.6 lb Nitrogen/ton sediment/year

Apply 50% Reduction Rate

http://chesapeakestormwater.net/wpcontent/uploads/dlm_uploads/2013/05/str eam-restoration-merged.pdf

NE Ohio Sediment Loads

Site	P loading (lbs P/ton sediment/yr)	N loading (lbs P/ton sediment/yr)	TSS loading (lbs/yr)	Stream Length (LF)
A	2.0	4.4	3,390.3	912
В	44.0	95.4	73,352.8	1491
С	17.5	37.9	29,117.4	1507
D	1.0	2.1	1,619.1	48
E	36.8	79.6	61,259	917
Total	101.3	219.4	168,798.6	4875
Total per LF	0.02	0.045	34.6	

That's a football field covered with 4.5 feet deep of sediment from one mile of stream length every year!

NE Ohio Sediment Loads

Outfalls- stable up to the 10 yr storm event

And the water flows to the stream....

But there is a problem. . .

One solution.

Dorsey Hall Village Center Stormwater Retrofit Site Plan

Biohabitats

The Sokles Belding 208, Clipper Park Boad Baltimere, MD 21211 / ph: 4103540156 fr: 4103540168 / www.biolefaturerem

Janese the Harth O' Jopin Humphel Anerotolog

Outfall ID	Retrofit Type	IA Treated (AC)	% DA Treated	Estimate of Probable Cost	Cost Per AC Treated
В	SW Wetland	7.3	100	\$335,300	\$45,932
С	SW Wetland	2	100	\$183,300	\$91,650
D	SW Wetland	2.8	100	\$222,000	\$79,286
E-J	Stream Restoration	14.2	59	\$691,800	\$48,718

* Costs include engineering and construction

Outfalls B,C, and D (stormwater wetlands)

Load Reductions	Pre-BMP Loads	Planned Load	Cost per Unit reduced per year (assume lifespan of 30 yrs)	Cost per Unit reduced per year/ per acre treated (assume lifespan of 30 yrs)
Nitrogen (lbs/yr)	5.17	1.03	\$ 6,768	\$ 559
Phosphorus (lbs/yr)	0.54	0.24	\$93,400	\$7,655
Sediment (lbs/yr)	760	460	\$93.40	\$7.72

Outfalls E-J (Stream Restoration)

Load Reductions	Pre-BMP Loads	Planned Load	Cost per Unit reduced per year (assume lifespan of 30 yrs)	Cost per Unit reduced per year/ per acre treated (assume lifespan of 30 yrs)
Nitrogen (lbs/yr)	101.6	50.94	\$ 455	\$32.04
Phosphorus (lbs/yr)	199.35	100.03	\$ 232	\$16.34
Sediment (lbs/yr)	184,100	92,500	\$0.25	\$0.01

Load Reductions	Cost per Unit reduced per year/ per acre treated (assume lifespan of 30 yrs)	Cost per Unit reduced per year/ per acre treated (assume lifespan of 30 yrs)
Nitrogen (lbs/yr)	\$ 559	\$32.04
Phosphorus (lbs/yr)	\$7,655	\$16.34
Sediment (lbs/yr)	\$7.72	\$0.01

If we want to improve our ecological function in headwater streams -

We live on a blue planet that circles around a ball of fire next to a moon that moves the sea, and you don't believe in miracles?

Questions?