Monitoring Runoff Particle Size Distribution and Trash in Runoff from Ohio Roads

Ryan Winston, PhD, P.E. Assistant Professor Department of Food, Agricultural, and Biological Engineering Department of Civil, Environmental, and Geodetic Engineering

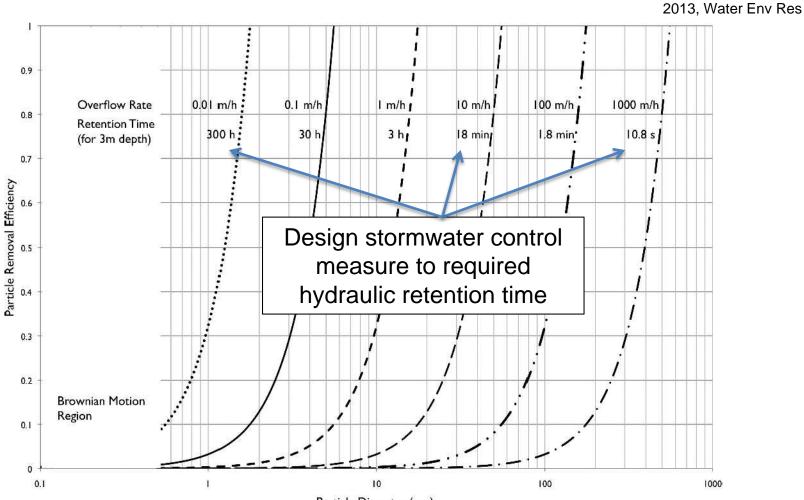
> Ohio Stormwater Conference – Sharonville, OH May 9, 2019

Runoff Carries with it Sediment & Trash

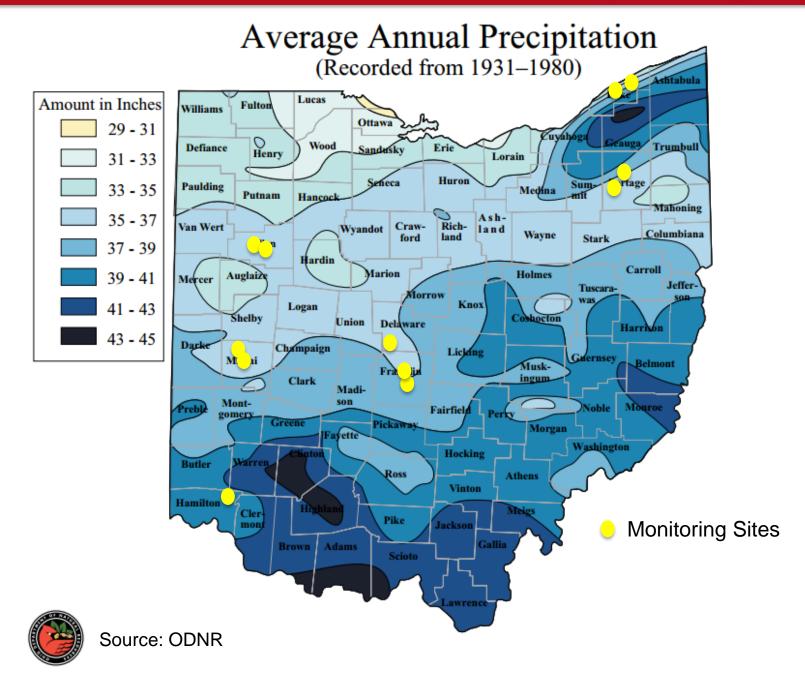
- Sediment
 - Typically analyzed as TSS
 - Lump 0.45 µm 2mm particle sizes

- Trash (Gross Solids)
 - Typically >1/4" (5 mm) diameter
 - TMDLs for trash in CA, MD

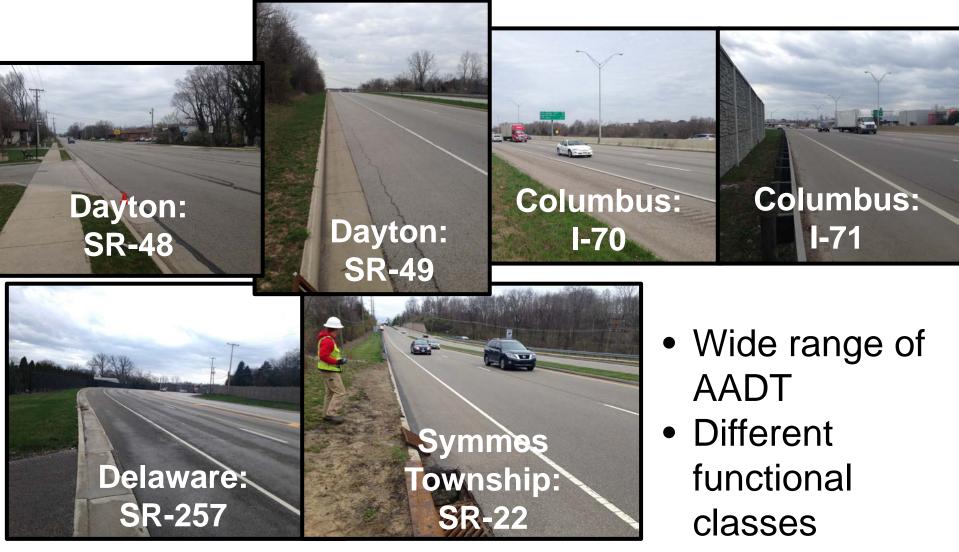
Why Study Particulates?


- For ODOT: permit compliance
- Water quality treatment practices:
 - ->80% TSS removal
 - Manufactured treatment systems
 - 21 currently approved
 - All hydrodynamic separators
 - L&D Vol. 2 Section 1117.1
 - Generally, capture particles
 >75 µm well

Why Does Particle Size Matter?


Ferreira and Stenstrom

Particle Diameter (µm)


Objectives of Study

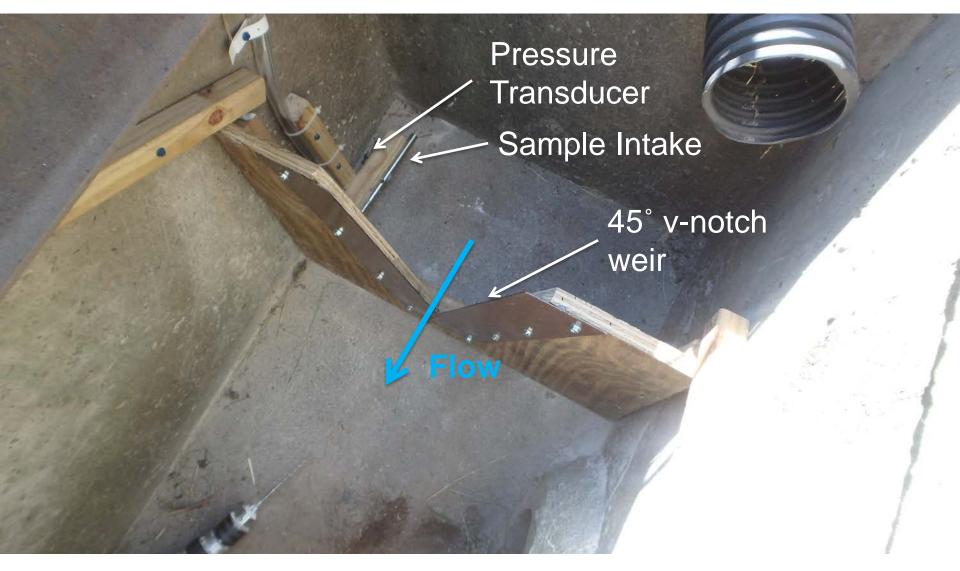
- Characterize particle size distributions (PSDs) and TSS in road runoff across Ohio.
- Gross solids collection from road runoff
 - Bulk volume/mass
 - Characterization
- Understand how manufactured treatment devices (MTDs) function under Ohio's conditions

2016 Monitoring Sites

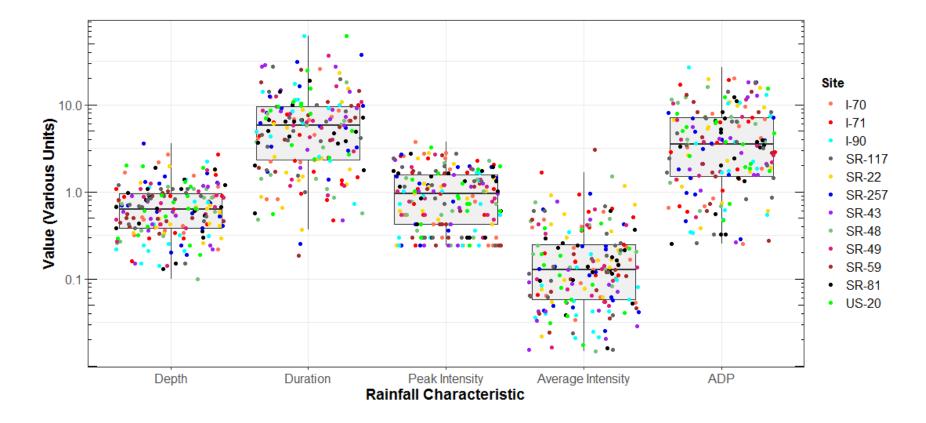
2017 Monitoring Sites

Variety of surrounding land use, pavement type, & development density

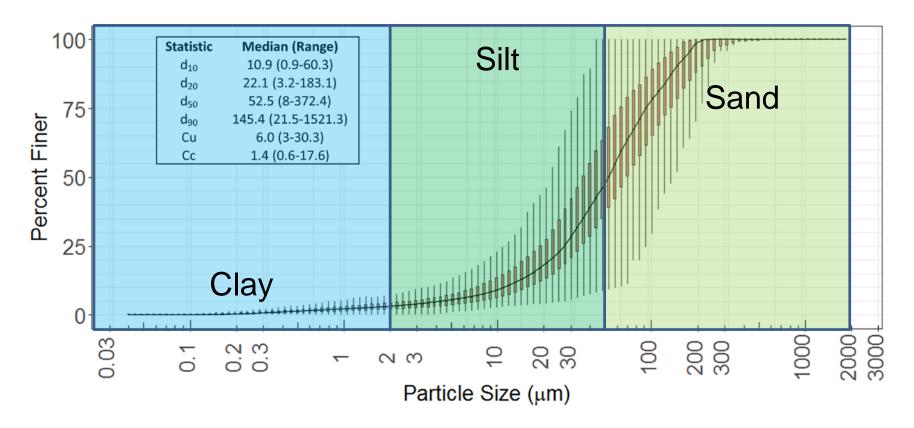
Monitoring Design


- Rainfall measured at each site using a tipping bucket & manual rain gauge
- Monitor concentrated gutter flow in catch basins at 6 sites in 2016 and 6 in 2017
- Runoff volume-proportional samples obtained using ISCO 6712 samplers (EMCs)

Monitoring Design


Methods for Sample Analysis

- Sampled 176 storms for PSD and TSS across 12 sites during 2016-2017
 - 12-18 storms per monitoring site
- PSD analyzed using Laser Diffraction Particle Counter (Beckman Coulter)
- Reports particle size between 0.04-2000 μm


PSD/TSS Sampled Rainfall Events

Depth (in), duration (hrs), antecedent dry period (ADP, days), peak intensity (in/hr), and average intensity (in/hr)

Variability in PSDs

All 176 measured PSDs in one figure

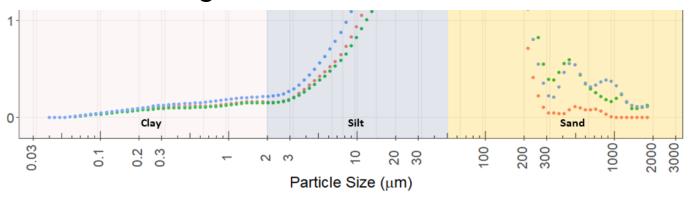
Median $d_{50} = 52.5 \mu m$, which is a very fine sand

Particle Size for Road Particulates

For the average sample at a site

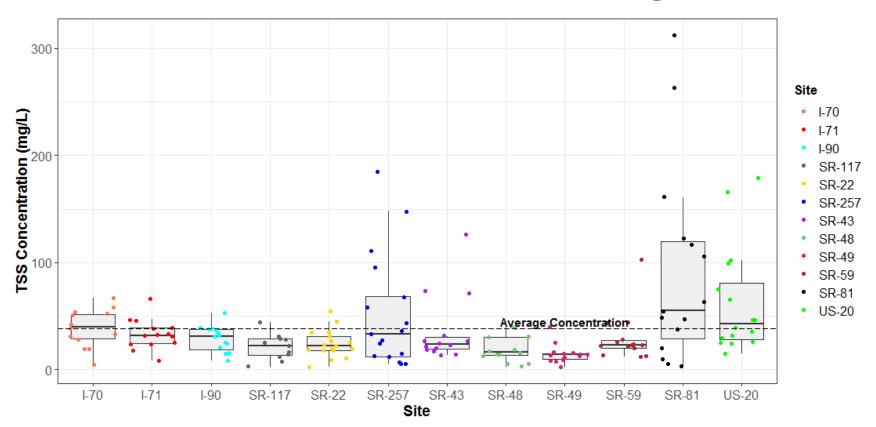
Tor the average sumple at a site												
Statistic	I-70	I-71	SR- 257	SR- 22	SR- 48	SR- 49	I-90	SR- 43	SR- 59	SR- 81	SR- 117	US- 20
% Sand	39.6	37.1	45.4	54.2	66.3	62.9	56.7	49.2	48.0	27.1	50.5	46.9
% Silt	55.2	58.6	50.5	42.0	31.5	34.7	40.8	47.1	48.8	64.5	45.9	49.2
% Clay	5.2	4.3	4.1	3.9	2.2	2.3	2.5	3.7	3.1	8.4	3.5	3.9
	*Using USDA soil classification system											

- 1. Settling mechanisms short HRT (seconds to minutes)
- 2. Settling or filtration mechanisms moderate HRT (30 mins to many hours)
- 3. Filtration mechanisms

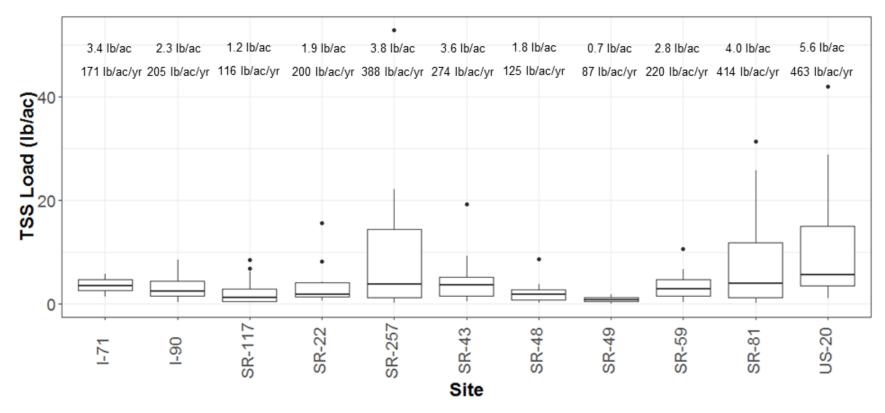


PSD by Season

Particle sizes generally largest in the summer (higher intensity rainfall)

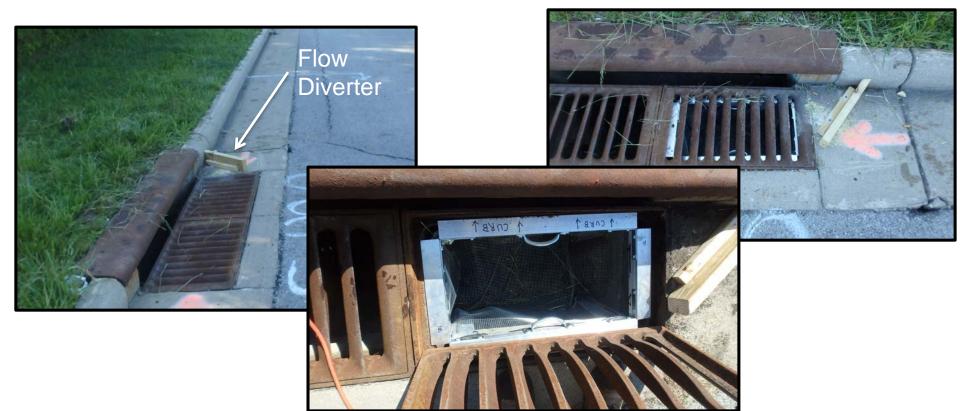


- Significantly larger particles in low density residential areas & principal arterial roads
- No difference in PSD across urban, suburban, rural or concrete and asphalt wearing courses
- Where differences in PSD occurred, they were small and therefore we do not recommend different BMP/SCM designs


TSS Concentrations by Site

Mean TSS concentration = 35 mg/L

TSS Load by Site


Average TSS load 242 lb/ac/yr

- Hydrologic response similar across sites
- Higher TSS concentration = higher TSS loads

Gross Solids Sampling

- Purpose built metal mesh netting
 - Nominal opening 0.25 inches
 - Drop into catch basin to capture gross solids

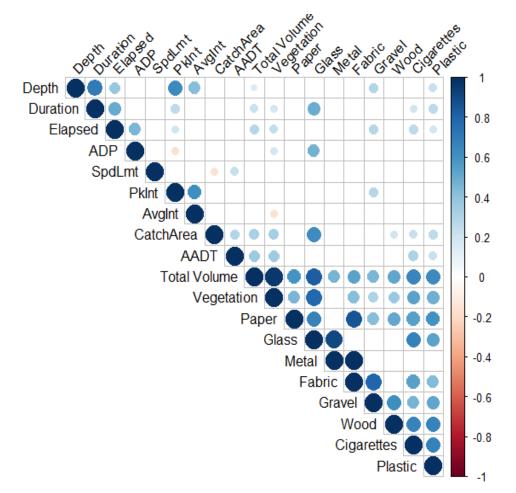
Gross Solids Sampling

- Sites visited every 11.6 ± 7.3 days
 - All accumulated debris and trash removed and taken to lab for analysis

- 202 total samples collected at 11 sites
- 14-22 samples per site
- 39 spring, 103 summer, & 60 fall samples collected

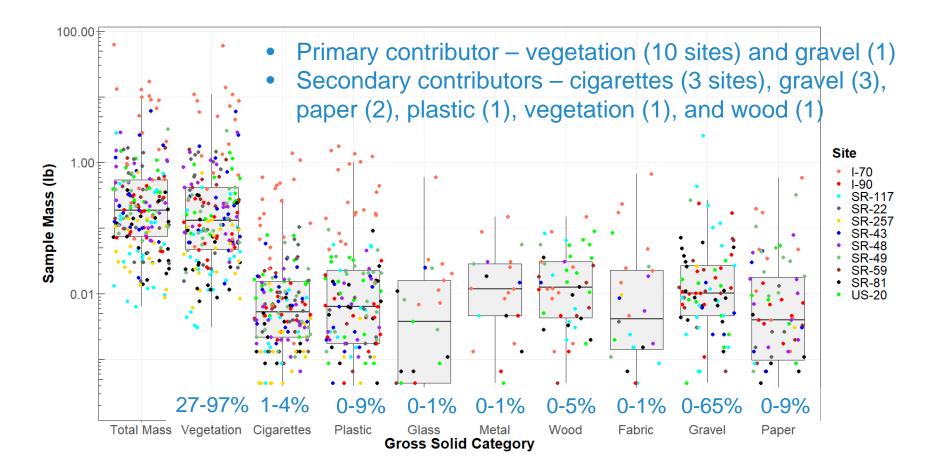

Gross Solids Laboratory Methods

- Characterized wet weight and volume for each sample & nine categories
 - Vegetation
 - Cigarettes
 - Plastic
 - Wood
 - Glass
 - Metal
 - Fabric
 - Paper
 - Gravel



Gross Solids Volume by Category

Predictors of Gross Solids Volume


Explored using Spearman's Rank Correlation Coefficients

- AADT correlated to total volume, vegetation, plastic, and cigarettes
- Rainfall depth and duration correlated to total volume, plastic
- Elapsed time since previous sample event correlated to vegetation, plastic, cigarettes, total volume

Gross Solids Mass by Category

Seasonality of Gross Solids Mass

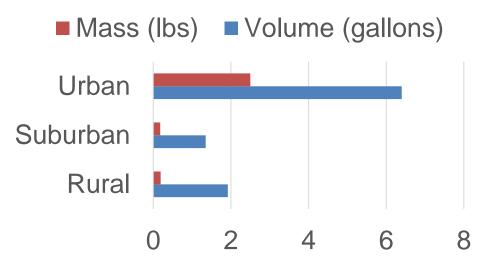
- Total mass and vegetation
 - Fall > Summer
- Plastic
 - Spring > Summer
- Gravel
 - Spring > Fall
 - Summer > Fall

- Related to plowing and freeze/thaw?

Autumn Season

Particularly high maintenance load for catch basin inserts or manufactured treatment devices

Oct 24, 2016


Nov 8, 2016

Urban vs. Suburban vs. Rural

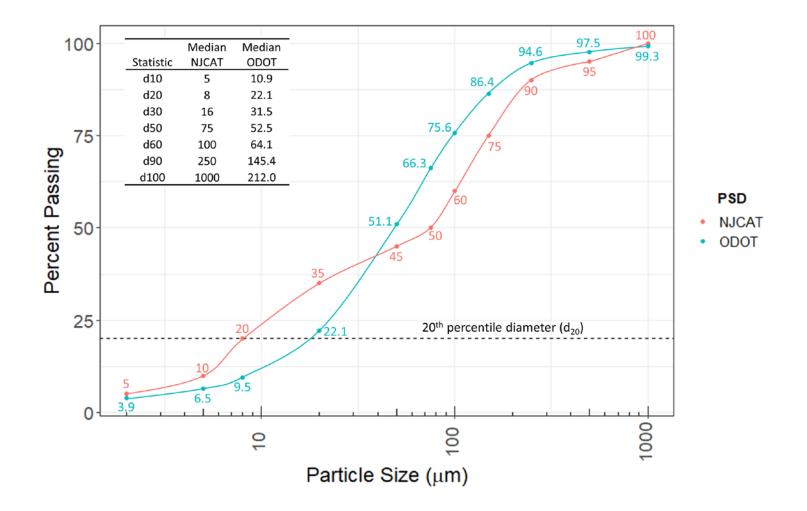
- Multiple linear regression:
 - On average, 12 times higher gross solids mass and 4 times higher volume from urban than suburban or rural sites
 - Similar trends for vegetation, plastic and cigarettes

Maintenance Needs after Mowing

Applying Ohio Road Stormwater Data to MTDs

Goals:

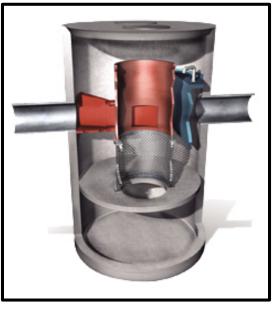
- Determine which MTDs meet 80% TSS removal
- What are costs to purchase, install, and maintain these MTDs?
- What TSS removal can we expect under PSDs and TSS concentrations measured during this project?
- Cost-benefit analysis for MTDs


Most MTD Testing Completed in Laboratory Setting

- Constant flow rates
- Constant, high TSS concentration (200 mg/L) with similar PSD to this study
- New Jersey DEP sets standards
 - https://www.nj.gov/dep/stormwater/mtd_guidance.htm

New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device

January 25, 2013


Test Sediment vs. Ohio Sediment

NJCAT Approved MTDs

50% TSS		80% TSS	ВМР Туре	
Removal	ВМР Туре	Removal		
			Filtration	
Aqua-Swirl	Hydrodyamic Separator	Aqua-Filter	Vault	
BaySaver			Filtration	
Barracuda	Hydrodyamic Separator	BayFilter	Vault	
			High-Flow	
CDS	Hydrodyamic Separator	Biopod	Filtration	
Downstream			High-Flow	
Defender	Hydrodyamic Separator	Filterra	Filtration	
			Filtration	
DVS	Hydrodyamic Separator	Kraken	Vault	
First Defense			Filtration	
HC	Hydrodyamic Separator	PerkFilter	Vault	
			Filtration	
HydroStorm Nutrient	Hydrodyamic Separator	StormKleener	Vault	
Separating	Baffles, Screens, &		Filtration	
Baffle Box	Skimmer Vault	StormFilter	Vault	
Danie Dox	Skininer vaar		Filtration	
SciClone	Hydrodyamic Separator	Up-Flo Filter	Vault	
SiteSaver	Hydrodyamic Separator		vaun	
StormPro	Hydrodyamic Separator			
Terre Kleen	Hydrodyamic Separator			
	i i jai oa jai no oopalatoi			

What are the Costs?

- Contacted 6 manufacturers for purchase, installation, and maintenance costs of various models of MTDs
 - Hydrodynamic separators
 - Underground filter vaults
 - High-flow media filters
- Determined approximate drainage area for each device using rational method
 C = 0.9, i = 1.85 in/hr, Q = certified flow rate

Example Data: Hydrodynamic Separators

Model	Approximate Drainage Area (ac)	NJDEP- certified Flows (cfs)	Estimated Cost to Purchase	Estimated Installation Cost	Annualized Maintenance Cost	30-Year Cost per Acre	30-Year Cost		
			CD	S (Contech)					
CDS-3	0.31	0.52	\$7,250	\$3,000	\$540	\$84,691	\$26,450		
CDS-4	0.56	0.93	\$10,000	\$4,000	\$800	\$68,032	\$38,000		
CDS-5	0.90	1.50	\$12,000	\$5 <i>,</i> 000	\$800	\$45,510	\$41,000		
CDS-6	1.26	2.10	\$18,000	\$6,000	\$800	\$38,057	\$48,000		
CDS-7	1.68	2.80	\$22,000	\$7,000	\$1,000	\$35,084	\$59,000		
CDS-8	2.22	3.70	\$30,000	\$8,000	\$1,000	\$30,600	\$68,000		
CDS-10	3.48	5.80	\$50,000	\$9,000	\$1,200	\$27,272	\$95,000		
	DVS (Oldcastle)								
DVS-36	0.36	0.6	\$8,000	\$3,000	\$1,500	\$155,400	\$56,000		
DVS-144	5.41	9	\$71,500	\$12,000	\$2,500	\$29,323	\$158,500		

Return on Investment

- Utilized 0.5, 2, and 10 acre drainage areas for case studies
- Utilized NJCAT-certified TSS removal rates
- Used measured TSS load from this study
- Chose solution that was lowest 30-year cost
 May result in multiple BMPs
- Compared using annual cost per lb of TSS removed

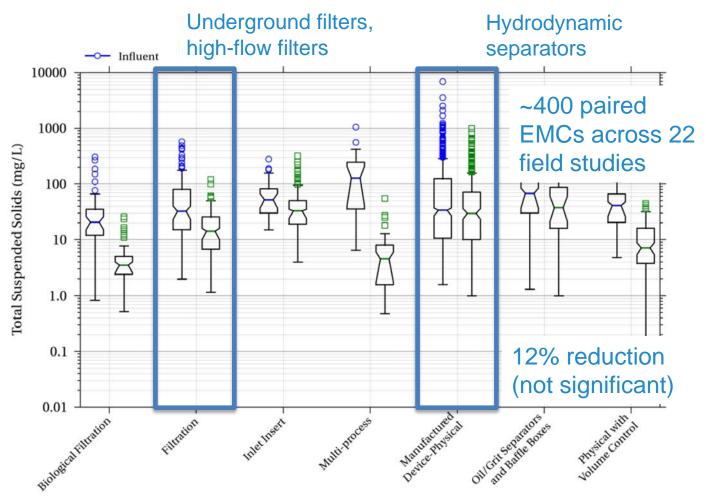
Return on Investment

2 acre drainage area

MTD	% TSS Removal	TSS Load (lb/ac/yr)	Manufacturer	Chosen Solution	30-Year Cost	Sediment Removed (lbs/ac/yr)	Annual Cost per Pound of Sediment Removed
Hydrodynamic Separator	50		Contech	1 CDS-8	\$68,000	121	\$9.37
		242	Oldcastle	1 DVS-144	\$158,500	121	\$21.83
			Contech	2 27-cartridge	\$465,800	193.6	\$40.10
Filtration Vault	80		Oldcastle	3 8 by 18 ft	\$472,800	193.6	\$40.70
			Bioclean	1 KF-10-16, 1 KF-4-6	\$377,920	193.6	\$32.53
High-Flow Filter	80		Contech	12 7x13	\$744,000	193.6	\$64.05
Figh-Flow Filler	00		Oldcastle	7 8x16	\$542,500	193.6	\$46.70

- Hydrodynamic separators cheaper as watershed area increases
- Costs to move to filtration are 2 to 4 times higher per lb of sediment removed (*assuming 50% TSS removal for HDS)

How do MTDs Perform under Field-Measured TSS and PSDs?


- Table 4 practices approved for 80% TSS removal
 - If <100 mg/L influent TSS, effluent must be 20 mg/L or lower
 - 35 mg/L mean TSS from roads in this study
- Question: Do the NJCAT lab testing results translate to the field?

International Stormwater BMP Database

- Database of field monitoring studies of stormwater BMPs from across the USA
- Over 700 BMP studies performed by researchers and municipalities
 - Report every 3-5 years with performance summaries
 - Manufactured treatment device report (2012)
 - http://www.bmpdatabase.org/

MTD TSS Performance

Source: International Stormwater BMP Database MTD Report (2012)

MTD TSS Performance

BMP Type	Median (95% Conf. Interval)*			
	In	Out		
Biological Filtration	20.5 (15.5, 25.9)	3.5 (2.5, 4.0)**		
Filtration	32.3 (23.0, 40.0)	14.2 (10.0, 15.0)**		
Inlet Insert	51.7 (37.0, 67.0)	32.9 (24.0, 35.0)**		
Multi-process	127.4 (41.0, 206.0)	4.5 (1.7, 6.0)**		
Manufactured Device-Physical	33.6 (26.8, 37.0)	29.7 (23.4, 36.0)		
Oil/Grit Separators and Baffle Boxes	67.6 (35.2, 84.0)	37.3 (21.2, 59.8)**		
Physical with Volume Control	41.2 (26.8, 47.6)	7.1 (5.4, 8.8)**		

Very similar influent concentrations to mean 35 mg/L observed in this study

BMPs & TSS Treatment Efficiency

Charters et al. (2015)

Treatment system	Reference	Reference		5	e removal (%) ax.; mean]				
Median d ₅₀ = 70 µm from roads in New Zealand									
Hydrodynamic separator (exper performance)	PSDs in this percent TSS removal wou	study, Ild be:	<70 70–150 150–250 250–425 >425 Total TSS Re	0% 19–21% 41–69% 58–87% 95–100% moval (%)	12-15%				
Dry detention basir	Hydrodynamic Separator Dry Detention	13 89.5	<8 8-20 20-100 >100	57—75% 84—91% 84—95% 100% ^a					
Pond and wetland	Wet Pond/Wetland Region co Authority	nservatio	Total TSS Re <2		87-95%				
			Total TSS Re	moval (%)	97%				

For HDS units, 10-15% TSS removal would not reduce TSS concentrations from 35 mg/L to 20 mg/L.

Closing Thoughts

- For 176 storm events samples:
 - Mean TSS concentrations from Ohio's roads were 35 mg/L
 - Particle size distribution was similar to NJCAT distribution
 - d₅₀ = 52.5 µm
 - d₂₀ = 22.1 µm
 - NJCAT testing does not seem representative of field conditions
 - Should always test devices under field conditions

Closing Thoughts

- Gross solids volume: ¼ gallon to 20 gallons every 11.6 days
 - 63-95% by volume is vegetation
 - Gravel/aggregate, cigarettes, plastic next most common (all <15% by volume)
- Gross solids mass: 0.1 lbs to 62 lbs every 11.6 days
 - Presence of large amounts of vegetation related to mowing of right-of-way and leafdrop in the autumn (targeted maintenance?)

Closing Thoughts

- Average TSS loading rate 242 lb/ac/yr
- Average gross solids loading rate 150 lb/ac/yr
 - Thus, TSS represents 62% and gross solids
 38% of the total measured solids

Questions

More Information: Winston.201@osu.edu

