

DYNAMICALLY COUPLING ENHANCED 1-D SEWER NETWORK AND 2-D SURFACE ROUTING FOR URBAN DRAINAGE

Qiuli Julie Lu and Hazem Gheith

Qiuli Julie Lu, Ph.D., P.E. Hazem Gheith, Ph.D., P.E.

- H/H Modeling
- Collection System Master Plan
- CSO/SSO Mitigation
- GI Planning and Implementation

Green Infrastructures in Urban Setting

- Suitable sites are limited
- Runoff arriving at the site is dictated
- Accurate flow calculation is critical

ARCADIS Design & Consultancy for natural and built assets

Traditional Approaches for Modeling Urban Drainage

Rational Method

Runoff = C * Rain Intensity * Contributing Area

- Maximum flow only
- No flow routing mechanism
- Minimum consideration to topology/depressions
- No AMC (seasonal impact and back-to-back storms)

Fixed Percentage Approach:

Runoff(t) = R% * Rain(t) * Contributing Area

- No routing mechanism
- Minimum consideration of topology
- No AMC

Traditional Approaches (continued)

SWMM Approach

$$\mathsf{Runoff}(\mathsf{t}) = \frac{1.49}{n} * S^{1/2} * \frac{\mathsf{Contributing Area}}{\mathsf{Flow Length}} * (h(\mathsf{t})-D)^{5/3}$$

- Limitation:
 - One slope value for the entire catchment
 - One depression value impervious/previous surfaces
 - One infiltration parameter for all pervious area types
 - One roughness value for roofs, drive ways and streets

Enhanced 1D Approach

- Use the wealth of available digital data
- Split the catchment into independent hydrologic units
 - Roofs, House Perimeter, Lawn area, Driveway/Street
- Route the flow between the hydrologic features
- Use the digital terrain data to accurately represent
 - Depression storages
 - Represent streets as open channels
- Include the storm inlets configuration to enhance percentage capture and street ponding/attenuations sanitary

Data Sources

GTOPO30 for the world wide, It has a 30-<u>arc</u> <u>second</u> resolution, ~ 1KM

https://www.usgs.gov National Elevation Dataset resolution, ~ 30m

Data at Finer Resolution

- High resolution model
- Improves planning quality
- More accurate and automated
- Enhances the flow prediction

Provides robust foundation for planning and managing stormwater improvements

GIS Data

- Independent hydrologic features (subareas)
 - Roofs
 - Buffers
 - Lawn
 - Streets

Depression Storage Curves

	FID	Shape	ld	Elevation	area
	0	Polygon	46699	786.8	1.7
	2	Polygon	46719	786.9	10.2
	1	Polygon	46719	787	18.6
	4	Polygon	46720	787.1	28.8
	3	Polygon	46720	787.2	43.4
	5	Polygon	46720	787.3	61.8
	6	Polygon	46720	787.4	87.1
	7	Polygon	46741	787.5	126.6

Automate depth-storage curve generation

Street Open Channel Routing

Storm Inlets

- Include storm inlets limitation from survey data or google maps
- Calibrate storm inlet effectiveness using street ponding information

Summary of Model Construction Steps

Flow Prediction Quality

Model Validation – October 2009

Model Validation – December 2009

Model Validation – January 2010

Completed Studies

Programs/Pilots since 2012

- □ Columbus Integrated Plan (SWMM)
- Columbus Blueprint Program (SWMM)
- □ Cincinnati (SWMM)
- □ Indianapolis (ICM)
- □ Buffalo (SWMM)
- DC Water (SWMM)
- □ Ft Wayne (SWMM)
- □ City of Westfield (ICM)
- □ City of Marysville (SWMM)
- □ York Region, Canada (ICM)
- □ Pittsburgh (SWMM)

Enhanced 1-D Limitation

• Fast, City wide, basin wide

Limitations

- Limited number of street cross sections in 1-D
- Weirs to connect overflow from one side to another
- Unexpected hidden routing configuration
- 2D section still needed for surface routing

2D Modeling Approach

- Divide the urban area into small cells
- Topology decides how flow is routed from one cell to another
- Different resolution for street, lawn, and around the house
- Take the houses out

Example: 2-D Benefit Over 1-D Approach

Depression Analysis

ArcGIS Sink Analysis applied to the Digital Terrain Data

2-D Videos

Central Residential District – High Tide

- Irene historical Storm
- Existing Condition
- 2D Modeling Analysis

Central Residential District – Free Outfall

Limitations of 2D

- Large model size
- Slow simulation time
 - Project schedule, machine time, engineer time, etc.
 - Engineering decision in the resolution level
- Cannot do 2D with complicated configuration, like on highways

Simulation Time for 1-yr

Coupling 1D with 2D

- Define 2-D boundary as runoff boundary
- Water can flow in and out from the 2-D zone

Conclusions

- Enhanced 1-D approach provided reliable flow prediction at good resolution
- Applicable for large scale studies
- 2-D model provides a better understanding of surface flow routing at critical locations
- Coupling 1-D and 2-D modeling approaches would provide a more accurate platform for educated GI planning in urban condition

Thank you!

Hazem.Gheith@arcadis.com Qiuli.Lu@arcadis.com

