Improvements to HEC -RAS Floodplain Elevations and Design of Hydraulic Improvements for Flood Relief using EPA SWMM v5:Case Study from the Allen Creek in Ann Arbor, MI.

Presented by: Nathan D. Zgnilec

Advancing Communities

Project Location

Ann Arbor, MI

- 120,000 population
 - 5th largest in MI
- University of Michigan

Allen Creek Watershed

- 5.65 square miles
- ~12 miles in length
- ~50% impervious

Allen Creek Connectivity and Enclosure

Majority enclosed, up to 100 -years old Outlet Capacity = 1,200 cfs

• 50 -year storm

Experiences most severe flooding in City

Depot St Parking Lot

Serves as relief when downstream enclosure surcharges

Frequently floods

Railroad berm acts as floodwall

Model: 10 -feet of flooding during 100

-year storm

100-year Storm Event

Modeled Flooding at Depot St. Parking Lot

100-year Storm Event

Modeled Flooding at Depot St. Parking Lot

Hydraulic Improvements for Flood Control

Goal

- General reduction in the depth and duration of flooding
- Decrease 100 -year flood depth by 5 feet

Solution

 Flood relief culverts through railroad berm

Allen Creek FEMA Floodplain

Last defined in 2012, using HEC -RAS model

2012 HEC - RAS model

 Steady -state surface flow model

Did not adequately account for

- dynamic routing
- increase flow through the pressurized enclosure
- surface storage

Resulted in

- underestimated flow capacity of enclosure
- artificially high floodplain elevations

Federal Emergency Management Agencyency

City of Ann Arbor Stormwater Management Model - 2015

- InfoSWMM model
- Accounts for City's entire stormwater conveyance system
 - 500 subcatchments
 - +4,000 links
 - +100 raingages
- Calibrated and validated using collected flow and rainfall data

Figure 1-1 – Stormwater System Components

Source: City of Ann Arbor Stormwater Model Calibration and Analysis Project, Final Report CDM Smith 2015

1. Existing Conditions Floodplain

Comparison of 100 -year floodplains

- HEC-RAS Effective Model
- SWMM Duplicate Effective Model

Focused on predicted water surface elevations

- SWMM model was up to 1.5 feet lower than HEC -RAS
- HEC-RAS was known to over predict flooding -> overestimated floodplain elevations

2. Evaluation of Proposed Hydraulic Improvements

Objective

 reduce flooding from 778.1 to 773, or lower

Solution

 allow surcharged flows to exit through relief culverts running below railroad berm

2. Evaluation of Proposed Hydraulic Improvements

Weir – 50 feet long Twin Box Culverts - 212 feet of 7'x12'

2. Evaluation of Proposed Hydraulic Improvements Depot St. Parking Lot - WSL

OHM Advisors ®

3. Revised Floodplain

Depot Street Parking Lot

• Reduced base flood elevation to 772.7 feet

Upstream Boundary

 Maintained existing floodplain elevation

7500_98011221N010_Alex_Ceek_Rained_BertLGSU/RevingCurningter/Floodpain4A.tros

4. FEMA CLOMR Application

- Successfully received CLOMR from FEMA based on SWMM model
 - Submitted in advance of project construction
 - Necessary because proposed improvements result in modification to the existing floodplain
- After project completion
 - Apply for LOMR

Design Renderings

Lessons Learned

- HEC-RAS is not always the most appropriate tool for floodplain mapping
- In an urban environment, like the Allen Creek, SWMM is better suited to model multiple dynamics
- Would not have been able to make design decisions in HEC RASs like we did in SWMM
- Using a different modeling method resulted in additional scrutiny from FEMA

Thank You

